Lim Hyobin Julianne, Yoon Haejin, Kim Hyeyeon, Kang Yun-Won, Kim Ji-Eun, Kim Oh Youn, Lee Eun-Young, Twizere Jean-Claude, Rak Janusz, Kim Dae-Kyum
Center for Personalized Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States.
Department of Cell Biology, Blavatnik Institute and Harvard Medical School, Boston, MA, United States.
Front Cell Dev Biol. 2021 Oct 1;9:734950. doi: 10.3389/fcell.2021.734950. eCollection 2021.
Extracellular vesicles (EVs) are membranous structures containing bioactive molecules, secreted by most cells into the extracellular environment. EVs are classified by their biogenesis mechanisms into two major subtypes: ectosomes (enriched in large EVs; lEVs), budding directly from the plasma membrane, which is common in both prokaryotes and eukaryotes, and exosomes (enriched in small EVs; sEVs) generated through the multivesicular bodies via the endomembrane system, which is unique to eukaryotes. Even though recent proteomic analyses have identified key proteins associated with EV subtypes, there has been no systematic analysis, thus far, to support the general validity and utility of current EV subtype separation methods, still largely dependent on physical properties, such as vesicular size and sedimentation. Here, we classified human EV proteomic datasets into two main categories based on distinct centrifugation protocols commonly used for isolating sEV or lEV fractions. We found characteristic, evolutionarily conserved profiles of sEV and lEV proteins linked to their respective biogenetic origins. This may suggest that the evolutionary trajectory of vesicular proteins may result in a membership bias toward specific EV subtypes. Protein-protein interaction (PPI) network analysis showed that vesicular proteins formed distinct clusters with proteins in the same EV fraction, providing evidence for the existence of EV subtype-specific protein recruiters. Moreover, we identified functional modules enriched in each fraction, including multivesicular body sorting for sEV, and mitochondria cellular respiration for lEV proteins. Our analysis successfully captured novel features of EVs embedded in heterogeneous proteomics studies and suggests specific protein markers and signatures to be used as quality controllers in the isolation procedure for subtype-enriched EV fractions.
细胞外囊泡(EVs)是包含生物活性分子的膜性结构,由大多数细胞分泌到细胞外环境中。根据其生物发生机制,EVs可分为两种主要亚型:外泌体(富含大EVs;lEVs),直接从质膜出芽,这在原核生物和真核生物中都很常见;以及外泌体(富含小EVs;sEVs),通过内膜系统经多囊泡体产生,这是真核生物所特有的。尽管最近的蛋白质组学分析已经鉴定出与EV亚型相关的关键蛋白质,但迄今为止,尚未有系统分析来支持当前EV亚型分离方法的普遍有效性和实用性,这些方法在很大程度上仍依赖于诸如囊泡大小和沉降等物理性质。在这里,我们根据常用于分离sEV或lEV组分的不同离心方案,将人类EV蛋白质组学数据集分为两大类。我们发现了与各自生物发生起源相关的sEV和lEV蛋白质的特征性、进化保守图谱。这可能表明囊泡蛋白的进化轨迹可能导致对特定EV亚型的成员偏向。蛋白质-蛋白质相互作用(PPI)网络分析表明,囊泡蛋白与同一EV组分中的蛋白质形成了不同的簇,为存在EV亚型特异性蛋白质招募者提供了证据。此外,我们确定了每个组分中富集的功能模块,包括sEV的多囊泡体分选,以及lEV蛋白质的线粒体细胞呼吸。我们的分析成功捕捉到了嵌入异质蛋白质组学研究中的EVs的新特征,并提出了特定的蛋白质标记物和特征,可作为富集亚型的EV组分分离过程中的质量控制指标。