Suppr超能文献

共培养中厌氧肠道真菌和产甲烷菌的非破坏性定量分析显示,与单培养相比,真菌生长速率增加,代谢通量发生变化。

Non-destructive quantification of anaerobic gut fungi and methanogens in co-culture reveals increased fungal growth rate and changes in metabolic flux relative to mono-culture.

机构信息

Department of Chemical Engineering, University of California, Santa Barbara, CA, 93106, USA.

Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, CA, 93106, USA.

出版信息

Microb Cell Fact. 2021 Oct 18;20(1):199. doi: 10.1186/s12934-021-01684-2.

Abstract

BACKGROUND

Quantification of individual species in microbial co-cultures and consortia is critical to understanding and designing communities with prescribed functions. However, it is difficult to physically separate species or measure species-specific attributes in most multi-species systems. Anaerobic gut fungi (AGF) (Neocallimastigomycetes) are native to the rumen of large herbivores, where they exist as minority members among a wealth of prokaryotes. AGF have significant biotechnological potential owing to their diverse repertoire of potent lignocellulose-degrading carbohydrate-active enzymes (CAZymes), which indirectly bolsters activity of other rumen microbes through metabolic exchange. While decades of literature suggest that polysaccharide degradation and AGF growth are accelerated in co-culture with prokaryotes, particularly methanogens, methods have not been available to measure concentrations of individual species in co-culture. New methods to disentangle the contributions of AGF and rumen prokaryotes are sorely needed to calculate AGF growth rates and metabolic fluxes to prove this hypothesis and understand its causality for predictable co-culture design.

RESULTS

We present a simple, microplate-based method to measure AGF and methanogen concentrations in co-culture based on fluorescence and absorbance spectroscopies. Using samples of < 2% of the co-culture volume, we demonstrate significant increases in AGF growth rate and xylan and glucose degradation rates in co-culture with methanogens relative to mono-culture. Further, we calculate significant differences in AGF metabolic fluxes in co-culture relative to mono-culture, namely increased flux through the energy-generating hydrogenosome organelle. While calculated fluxes highlight uncertainties in AGF primary metabolism that preclude definitive explanations for this shift, our method will enable steady-state fluxomic experiments to probe AGF metabolism in greater detail.

CONCLUSIONS

The method we present to measure AGF and methanogen concentrations enables direct growth measurements and calculation of metabolic fluxes in co-culture. These metrics are critical to develop a quantitative understanding of interwoven rumen metabolism, as well as the impact of co-culture on polysaccharide degradation and metabolite production. The framework presented here can inspire new methods to probe systems beyond AGF and methanogens. Simple modifications to the method will likely extend its utility to co-cultures with more than two organisms or those grown on solid substrates to facilitate the design and deployment of microbial communities for bioproduction and beyond.

摘要

背景

在微生物共培养物和联合体中对个体物种进行定量分析对于理解和设计具有特定功能的群落至关重要。然而,在大多数多物种系统中,很难将物种物理分离或测量特定物种的属性。厌氧肠道真菌(AGF)(Neocallimastigomycetes)是大型草食动物瘤胃中的天然产物,在那里它们是丰富的原核生物中的少数成员。AGF 具有广泛的木质纤维素降解碳水化合物活性酶(CAZymes) repertoire,具有重要的生物技术潜力,通过代谢交换间接增强了其他瘤胃微生物的活性。尽管数十年的文献表明,在与原核生物(特别是产甲烷菌)共培养中,多糖降解和 AGF 生长会加速,但目前还没有方法可以测量共培养物中单个物种的浓度。迫切需要新的方法来分解 AGF 和瘤胃原核生物的贡献,以计算 AGF 生长速率和代谢通量,以证明这一假设,并了解其对可预测共培养设计的因果关系。

结果

我们提出了一种简单的基于荧光和吸收光谱的微板法,用于测量共培养物中的 AGF 和产甲烷菌浓度。使用小于共培养物体积的 2%的样品,我们证明了与单培养物相比,在与产甲烷菌共培养物中 AGF 生长速率和木聚糖和葡萄糖降解速率显著增加。此外,我们还计算了共培养物相对于单培养物的 AGF 代谢通量存在显著差异,即通过产生能量的氢化体细胞器的通量增加。虽然计算通量突出了 AGF 初级代谢中存在的不确定性,无法对这种转变做出明确的解释,但我们的方法将使稳态通量组学实验能够更详细地研究 AGF 代谢。

结论

我们提出的测量 AGF 和产甲烷菌浓度的方法能够直接测量共培养物中的生长并计算代谢通量。这些指标对于深入了解交织在一起的瘤胃代谢以及共培养物对多糖降解和代谢产物产生的影响至关重要。本文提出的框架可以激发新的方法来探测超越 AGF 和产甲烷菌的系统。对该方法进行简单修改可能会扩展其在具有两个以上生物体或在固体基质上生长的共培养物中的应用,以促进微生物群落的设计和部署用于生物生产及其他领域。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a076/8522008/621d5c772e6e/12934_2021_1684_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验