Suppr超能文献

厌氧新美鞭菌门真菌基因组规模代谢模型的实验验证重建与分析

Experimentally Validated Reconstruction and Analysis of a Genome-Scale Metabolic Model of an Anaerobic Neocallimastigomycota Fungus.

作者信息

Wilken St Elmo, Monk Jonathan M, Leggieri Patrick A, Lawson Christopher E, Lankiewicz Thomas S, Seppälä Susanna, Daum Chris G, Jenkins Jerry, Lipzen Anna M, Mondo Stephen J, Barry Kerrie W, Grigoriev Igor V, Henske John K, Theodorou Michael K, Palsson Bernhard O, Petzold Linda R, O'Malley Michelle A

机构信息

Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, California, USA.

Department of Bioengineering, University of California San Diego, San Diego, California, USA.

出版信息

mSystems. 2021 Feb 16;6(1):e00002-21. doi: 10.1128/mSystems.00002-21.

Abstract

Anaerobic gut fungi in the phylum Neocallimastigomycota typically inhabit the digestive tracts of large mammalian herbivores, where they play an integral role in the decomposition of raw lignocellulose into its constitutive sugar monomers. However, quantitative tools to study their physiology are lacking, partially due to their complex and unresolved metabolism that includes the largely uncharacterized fungal hydrogenosome. Modern omics approaches combined with metabolic modeling can be used to establish an understanding of gut fungal metabolism and develop targeted engineering strategies to harness their degradation capabilities for lignocellulosic bioprocessing. Here, we introduce a high-quality genome of the anaerobic fungus from which we constructed the first genome-scale metabolic model of an anaerobic fungus. Relative to its size (200 Mbp, sequenced at 62× depth), it is the least fragmented publicly available gut fungal genome to date. Of the 1,788 lignocellulolytic enzymes annotated in the genome, 585 are associated with the fungal cellulosome, underscoring the powerful lignocellulolytic potential of The genome-scale metabolic model captures the primary metabolism of and accurately predicts experimentally validated substrate utilization requirements. Additionally, metabolic flux predictions are verified by C metabolic flux analysis, demonstrating that the model faithfully describes the underlying fungal metabolism. Furthermore, the model clarifies key aspects of the hydrogenosomal metabolism and can be used as a platform to quantitatively study these biotechnologically important yet poorly understood early-branching fungi. Recent genomic analyses have revealed that anaerobic gut fungi possess both the largest number and highest diversity of lignocellulolytic enzymes of all sequenced fungi, explaining their ability to decompose lignocellulosic substrates, e.g., agricultural waste, into fermentable sugars. Despite their potential, the development of engineering methods for these organisms has been slow due to their complex life cycle, understudied metabolism, and challenging anaerobic culture requirements. Currently, there is no framework that can be used to combine multi-omic data sets to understand their physiology. Here, we introduce a high-quality PacBio-sequenced genome of the anaerobic gut fungus Beyond identifying a trove of lignocellulolytic enzymes, we use this genome to construct the first genome-scale metabolic model of an anaerobic gut fungus. The model is experimentally validated and sheds light on unresolved metabolic features common to gut fungi. Model-guided analysis will pave the way for deepening our understanding of anaerobic gut fungi and provides a systematic framework to guide strain engineering efforts of these organisms for biotechnological use.

摘要

新美鞭菌门的厌氧肠道真菌通常栖息于大型哺乳动物食草动物的消化道中,在将原始木质纤维素分解为其组成糖单体的过程中发挥着不可或缺的作用。然而,研究它们生理学的定量工具却很缺乏,部分原因是它们复杂且尚未明确的新陈代谢,其中包括很大程度上未被表征的真菌氢化酶体。现代组学方法与代谢建模相结合,可用于建立对肠道真菌新陈代谢的理解,并制定有针对性的工程策略,以利用它们的降解能力进行木质纤维素生物处理。在此,我们介绍了一种厌氧真菌的高质量基因组,并据此构建了首个厌氧真菌的基因组规模代谢模型。相对于其大小(200 Mbp,测序深度为62×),它是迄今为止公开可用的碎片化程度最低的肠道真菌基因组。在该基因组中注释的1788种木质纤维素酶中,有585种与真菌纤维小体相关,突出了其强大的木质纤维素降解潜力。该基因组规模代谢模型涵盖了其初级代谢,并准确预测了经实验验证的底物利用需求。此外,代谢通量预测通过¹³C代谢通量分析得到验证,表明该模型如实地描述了潜在的真菌代谢。此外,该模型阐明了氢化酶体代谢的关键方面,可作为一个平台来定量研究这些在生物技术方面重要但了解甚少的早期分支真菌。最近的基因组分析表明,厌氧肠道真菌拥有所有已测序真菌中数量最多、多样性最高的木质纤维素酶,这解释了它们将木质纤维素底物(如农业废弃物)分解为可发酵糖的能力。尽管它们具有潜力,但由于其复杂的生命周期、研究不足的新陈代谢以及具有挑战性的厌氧培养要求,针对这些生物体的工程方法发展一直很缓慢。目前,尚无一个框架可用于整合多组学数据集来理解它们的生理学。在此,我们介绍了一种通过PacBio测序的厌氧肠道真菌的高质量基因组。除了鉴定出大量木质纤维素酶外,我们利用这个基因组构建了首个厌氧肠道真菌的基因组规模代谢模型。该模型经过实验验证,揭示了肠道真菌共有的未解决代谢特征。基于模型的分析将为加深我们对厌氧肠道真菌的理解铺平道路,并提供一个系统框架来指导这些生物体用于生物技术用途的菌株工程工作。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7fe8/8561657/1dc5d7f9a880/msystems.00002-21-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验