Fu Runqi, Han Lin, Li Qian, Li Zhe, Dai Yue, Leng Jing
Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China.
Key Laboratory of Animal Nutrition and Feed Science of Yunnan Province, Yunnan Agricultural University, Kunming, China.
Front Microbiol. 2025 May 9;16:1554271. doi: 10.3389/fmicb.2025.1554271. eCollection 2025.
The complex structure of lignocellulose, one of the most abundant renewable resources on earth, makes biodegradation challenging. Ruminant gastrointestinal microbiota achieves efficient lignocellulose degradation through a highly synergistic ecosystem, which provides an important research model for sustainable energy development and high value-added chemical production. This review systematically summarizes the key mechanisms of lignocellulose degradation by ruminant gastrointestinal microorganisms, focusing on the synergistic roles of rumen and hindgut (including cecum, colon, and rectum) microorganisms in cellulose, hemicellulose, and lignin degradation. The study focuses on the functional differentiation and cooperation patterns of bacteria, fungi and protozoa in lignocellulose decomposition, and summarizes the roles of carbohydrate-active enzymes (CAZymes) and their new discoveries under the histological techniques. In addition, this manuscript explores the potential application of gastrointestinal tract (GIT) microbial degradation mechanisms in improving the utilization of straw-based feeds. In the future, by revealing the mechanism of microbe-host synergy and integrating multi-omics technologies, the study of ruminant gastrointestinal microbial ecosystems will provide new solutions to promote the efficient utilization of lignocellulose and alleviate the global energy crisis.
木质纤维素是地球上最丰富的可再生资源之一,其复杂的结构使得生物降解具有挑战性。反刍动物胃肠道微生物群通过高度协同的生态系统实现了木质纤维素的高效降解,这为可持续能源开发和高附加值化学品生产提供了重要的研究模型。本文系统总结了反刍动物胃肠道微生物降解木质纤维素的关键机制,重点关注瘤胃和后肠(包括盲肠、结肠和直肠)微生物在纤维素、半纤维素和木质素降解中的协同作用。该研究聚焦于细菌、真菌和原生动物在木质纤维素分解中的功能分化与合作模式,并在组织学技术下总结了碳水化合物活性酶(CAZymes)的作用及其新发现。此外,本文还探讨了胃肠道(GIT)微生物降解机制在提高秸秆类饲料利用率方面的潜在应用。未来,通过揭示微生物与宿主的协同机制并整合多组学技术,反刍动物胃肠道微生物生态系统的研究将为促进木质纤维素的高效利用和缓解全球能源危机提供新的解决方案。