Suppr超能文献

儿科医院的警示负担:使用新指标对六个学术儿科医疗系统进行的横断面分析。

Alert burden in pediatric hospitals: a cross-sectional analysis of six academic pediatric health systems using novel metrics.

机构信息

Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA.

Division of Hospital Medicine, Children's Healthcare of Atlanta, Atlanta, Georgia, USA.

出版信息

J Am Med Inform Assoc. 2021 Nov 25;28(12):2654-2660. doi: 10.1093/jamia/ocab179.

Abstract

BACKGROUND

Excessive electronic health record (EHR) alerts reduce the salience of actionable alerts. Little is known about the frequency of interruptive alerts across health systems and how the choice of metric affects which users appear to have the highest alert burden.

OBJECTIVE

(1) Analyze alert burden by alert type, care setting, provider type, and individual provider across 6 pediatric health systems. (2) Compare alert burden using different metrics.

MATERIALS AND METHODS

We analyzed interruptive alert firings logged in EHR databases at 6 pediatric health systems from 2016-2019 using 4 metrics: (1) alerts per patient encounter, (2) alerts per inpatient-day, (3) alerts per 100 orders, and (4) alerts per unique clinician days (calendar days with at least 1 EHR log in the system). We assessed intra- and interinstitutional variation and how alert burden rankings differed based on the chosen metric.

RESULTS

Alert burden varied widely across institutions, ranging from 0.06 to 0.76 firings per encounter, 0.22 to 1.06 firings per inpatient-day, 0.98 to 17.42 per 100 orders, and 0.08 to 3.34 firings per clinician day logged in the EHR. Custom alerts accounted for the greatest burden at all 6 sites. The rank order of institutions by alert burden was similar regardless of which alert burden metric was chosen. Within institutions, the alert burden metric choice substantially affected which provider types and care settings appeared to experience the highest alert burden.

CONCLUSION

Estimates of the clinical areas with highest alert burden varied substantially by institution and based on the metric used.

摘要

背景

过多的电子健康记录 (EHR) 警报会降低可操作警报的显著性。对于整个医疗系统中中断性警报的频率以及选择的衡量标准如何影响哪些用户似乎具有最高的警报负担,知之甚少。

目的

(1) 分析 6 个儿科医疗系统中按警报类型、护理环境、提供者类型和个体提供者分类的警报负担。(2) 使用不同的指标比较警报负担。

材料和方法

我们使用 4 种指标分析了 6 个儿科医疗系统在 2016-2019 年间 EHR 数据库中记录的中断性警报触发情况:(1) 每个患者就诊的警报数,(2) 每个住院日的警报数,(3) 每 100 个医嘱的警报数,以及 (4) 每个独特临床医生日(至少有 1 个 EHR 登录系统的日历日)的警报数。我们评估了机构内和机构间的变化以及基于所选指标的警报负担排名差异。

结果

各机构之间的警报负担差异很大,范围从每次就诊 0.06 到 0.76 次触发,每次住院日 0.22 到 1.06 次触发,每 100 个医嘱 0.98 到 17.42 次触发,每个临床医生日 0.08 到 3.34 次触发。在所有 6 个站点,自定义警报的负担最大。无论选择哪种警报负担衡量标准,机构的警报负担排名顺序都相似。在机构内部,警报负担衡量标准的选择极大地影响了哪些提供者类型和护理环境似乎经历了最高的警报负担。

结论

根据机构和使用的衡量标准,估计具有最高警报负担的临床领域的结果差异很大。

相似文献

9
Reducing Interruptive Alert Burden Using Quality Improvement Methodology.利用质量改进方法减少干扰性警报负担。
Appl Clin Inform. 2020 Jan;11(1):46-58. doi: 10.1055/s-0039-3402757. Epub 2020 Jan 15.

引用本文的文献

3
The association between alarm burden and nurse burnout in U.S. hospitals.美国医院中报警负担与护士职业倦怠之间的关联。
Nurs Outlook. 2024 Nov-Dec;72(6):102288. doi: 10.1016/j.outlook.2024.102288. Epub 2024 Oct 17.
6

本文引用的文献

6
Reducing Interruptive Alert Burden Using Quality Improvement Methodology.利用质量改进方法减少干扰性警报负担。
Appl Clin Inform. 2020 Jan;11(1):46-58. doi: 10.1055/s-0039-3402757. Epub 2020 Jan 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验