Department of Brain & Cognition, KU Leuven, Leuven, Belgium.
J Int Neuropsychol Soc. 2022 Oct;28(9):984-995. doi: 10.1017/S1355617721001120. Epub 2021 Oct 19.
Clinical neuropsychology has been slow in adopting novelties in psychometrics, statistics, and technology. Researchers have indicated that the stationary nature of clinical neuropsychology endangers its evidence-based character. In addition to a technological crisis, there may be a statistical crisis affecting clinical neuropsychology. That is, the frequentist null hypothesis significance testing framework remains the dominant approach in clinical practice, despite a recent surge in critique on this framework. While the Bayesian framework has been put forward as a viable alternative in psychology in general, the possibilities it offers to clinical neuropsychology have not received much attention.
In the current position paper, we discuss and reflect on the value of Bayesian methods for the advancement of evidence-based clinical neuropsychology.
We aim to familiarize clinical neuropsychologists and neuropsychological researchers to Bayesian methods of inference and provide a clear rationale for why these methods are valuable for clinical neuropsychology.
We argue that Bayesian methods allow for a more intuitive answer to our diagnostic questions and form a more solid foundation for sequential and adaptive diagnostic testing, representing uncertainty about patients' observed test scores and cognitive modeling of test results.
临床神经心理学在采用心理测量学、统计学和技术方面一直较为迟缓。研究人员表示,临床神经心理学的静态特性危及了其循证特征。除了技术危机外,临床神经心理学可能还存在统计学危机。也就是说,尽管最近对该框架的批评声不断,但频率论零假设显著性检验框架仍然是临床实践中的主要方法。虽然贝叶斯框架已被提出作为心理学的一种可行替代方法,但它为临床神经心理学提供的可能性尚未得到太多关注。
在当前的立场文件中,我们讨论并反思了贝叶斯方法对推进基于证据的临床神经心理学的价值。
我们旨在让临床神经心理学家和神经心理学研究人员熟悉贝叶斯推理方法,并提供明确的理由,说明为什么这些方法对临床神经心理学很有价值。
我们认为,贝叶斯方法可以更直观地回答我们的诊断问题,并为序贯和适应性诊断测试提供更坚实的基础,从而代表对患者观察到的测试分数的不确定性以及对测试结果的认知建模。