Suppr超能文献

快速且精确的多维自由能积分。

Fast and Accurate Multidimensional Free Energy Integration.

机构信息

Laboratoire de Biochimie Théorique, UPR 9080, CNRS, Université de Paris, 75005 Paris, France.

Institut de Biologie Physico-Chimique-Fondation Edmond de Rothschild, PSL Research University, 75005 Paris, France.

出版信息

J Chem Theory Comput. 2021 Nov 9;17(11):6789-6798. doi: 10.1021/acs.jctc.1c00593. Epub 2021 Oct 19.

Abstract

Enhanced sampling and free energy calculation algorithms of the thermodynamic integration family (such as the adaptive biasing force (ABF) method) are not based on the direct computation of a free energy surface but rather of its gradient. Integrating the free energy surface is nontrivial in dimensions higher than one. Here, the author introduces a flexible, portable implementation of a Poisson equation formalism to integrate free energy surfaces from estimated gradients in dimensions 2 and 3 using any combination of periodic and nonperiodic (Neumann) boundary conditions. The algorithm is implemented in portable C++ and provided as a standalone tool that can be used to integrate multidimensional gradient fields estimated on a grid using any algorithm, such as umbrella integration as a post-treatment of umbrella sampling simulations. It is also included in the implementation of ABF (and its extended-system variant eABF) in the Collective Variables Module, enabling the seamless computation of multidimensional free energy surfaces within ABF and eABF simulations. A Python-based analysis toolchain is provided to easily plot and analyze multidimensional ABF simulation results, including metrics to assess their convergence. The Poisson integration algorithm can also be used to perform Helmholtz decomposition of noisy gradient estimates on the fly, resulting in an efficient implementation of the projected ABF (pABF) method proposed by Leliévre and co-workers. In numerical tests, pABF is found to lead to faster convergence with respect to ABF in simple cases of low intrinsic dimension but seems detrimental to convergence in a more realistic case involving degenerate coordinates and hidden barriers due to slower exploration. This suggests that variance reduction schemes do not always yield convergence improvements when applied to enhanced sampling methods.

摘要

热力学积分家族(如自适应偏差力 (ABF) 方法)的增强采样和自由能计算算法不是基于自由能面的直接计算,而是基于其梯度。在维度高于一的情况下,积分自由能面是非平凡的。在这里,作者引入了一种灵活的、可移植的泊松方程形式的实现,用于在 2 维和 3 维中使用任何周期性和非周期性(Neumann)边界条件的组合来积分自由能面,这些自由能面是由估计的梯度得出的。该算法用可移植的 C++实现,并提供了一个独立的工具,可以用于在网格上使用任何算法(如伞形积分作为伞形采样模拟的后处理)来积分多维梯度场。它也被包含在集体变量模块中的 ABF(及其扩展系统变体 eABF)的实现中,从而能够在 ABF 和 eABF 模拟中无缝计算多维自由能面。提供了一个基于 Python 的分析工具链,用于轻松绘制和分析多维 ABF 模拟结果,包括评估其收敛性的指标。泊松积分算法还可以用于实时对噪声梯度估计进行亥姆霍兹分解,从而有效地实现了 Leliévre 及其同事提出的投影 ABF (pABF) 方法。在数值测试中,在低固有维度的简单情况下,pABF 被发现比 ABF 收敛更快,但在更现实的情况下,由于探索速度较慢,涉及简并坐标和隐藏障碍,pABF 似乎不利于收敛。这表明变分减少方案并不总是在应用于增强采样方法时提高收敛性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验