Suppr超能文献

植物纤维素纳米纤维衍生结构材料,具有高密度可逆相互作用网络,可用作塑料替代品。

Plant Cellulose Nanofiber-Derived Structural Material with High-Density Reversible Interaction Networks for Plastic Substitute.

机构信息

Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Institute of Energy, Hefei Comprehensive National Science Center, CAS Center for Excellence in Nanoscience, Department of Chemistry, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, University of Science and Technology of China, Hefei 230026, China.

出版信息

Nano Lett. 2021 Nov 10;21(21):8999-9004. doi: 10.1021/acs.nanolett.1c02315. Epub 2021 Oct 19.

Abstract

Ubiquitous petrochemical-based plastics pose a potential threat to ecosystems. In response, bioderived and degradable polymeric materials are being developed, but their mechanical and thermal properties cannot compete with those of existing petrochemical-based plastics, especially those used as structural materials. Herein, we report a biodegradable plant cellulose nanofiber (CNF)-derived polymeric structural material with high-density reversible interaction networks between nanofibers, exhibiting mechanical and thermal properties better than those of existing petrochemical-based plastics. This all-green material has substantially improved flexural strength (∼300 MPa) and modulus (∼16 GPa) compared with those of existing petrochemical-based plastics. Its average thermal expansion coefficient is only 7 × 10 K, which is more than 10 times lower than those of petrochemical-based plastics, indicating its dimension is almost unchanged when heated, and thus, it has a thermal dimensional stability that is better than those of plastics. As a fully bioderived and degradable material, the all-green material offers a more sustainable high-performance alternative to petrochemical-based plastics.

摘要

无处不在的基于石化的塑料对生态系统构成了潜在威胁。有鉴于此,人们正在开发生物基和可降解的聚合材料,但它们的机械和热性能无法与现有的基于石化的塑料相媲美,特别是那些用作结构材料的塑料。在此,我们报告了一种可生物降解的植物纤维素纳米纤维(CNF)衍生的聚合结构材料,其纳米纤维之间具有高密度的可逆相互作用网络,表现出优于现有基于石化的塑料的机械和热性能。与现有的基于石化的塑料相比,这种全绿色材料的弯曲强度(约 300 MPa)和模量(约 16 GPa)有了显著提高。其平均热膨胀系数仅为 7×10^-6 K,比基于石化的塑料低 10 多倍,这表明其尺寸在加热时几乎不变,因此,它的热尺寸稳定性优于塑料。作为一种完全生物基和可降解的材料,全绿色材料为基于石化的塑料提供了一种更可持续的高性能替代品。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验