Jian Jialin, Su Jiaqi, Song Yujian, Wang Jingshun, Cong Jie, Wei Shuangying, Gao Zhenhua, Han Shuaiyuan
College of Material Science and Engineering, Northeast Forestry University, Harbin 150040, China.
Engineering Research Center of Advanced Wooden Materials, Ministry of Education, Northeast Forestry University, Harbin 150040, China.
Polymers (Basel). 2025 Mar 28;17(7):921. doi: 10.3390/polym17070921.
In recent years, the disposal of agricultural lignocellulosic residues has been accompanied by problems such as resource waste and environmental pollution. Therefore, the development of valorization technologies has emerged as a strategic priority in sustainable materials science. This study pioneered the use of corncob cellulose as the substrate (a representative agricultural lignocellulosic residue) and transformed it into ionized cellulose by grafting methacryloxyethyl trimethyl ammonium chloride (DMC) via atom transfer radical polymerization (ATRP) and UV-initiated polymerization. Characterizations demonstrated exceptional properties: robust mechanical strength (1.28 MPa tensile strength with 573% elongation); outstanding thermal stability (stable to 278 °C); cryogenic tolerance (retaining flexibility at -25 °C); and universal adhesion capability (4.23 MPa to glass substrates, with adequate interfacial bonding across diverse surfaces). Meanwhile, the ionogel exhibited exceptional sensing sensitivity (gauge factor, GF = 1.23-2.08), demonstrating versatile application potential in wearable electronics. It achieved the precise detection of subtle strains (1-5% strain range) and the high-fidelity acquisition of electrocardiogram (ECG) signals. This study broadens the design paradigm of agricultural lignocellulosic residue-based functional materials. It also provides a novel technical pathway to develop eco-friendly intelligent sensors.
近年来,农业木质纤维素残留物的处理伴随着资源浪费和环境污染等问题。因此,开发增值技术已成为可持续材料科学的战略重点。本研究率先使用玉米芯纤维素作为底物(一种典型的农业木质纤维素残留物),并通过原子转移自由基聚合(ATRP)和紫外光引发聚合接枝甲基丙烯酰氧乙基三甲基氯化铵(DMC),将其转化为离子化纤维素。表征显示出优异的性能:强大的机械强度(拉伸强度为1.28 MPa,伸长率为573%);出色的热稳定性(在278 °C下稳定);低温耐受性(在-25 °C下保持柔韧性);以及通用的粘附能力(与玻璃基板的粘附力为4.23 MPa,在不同表面上具有足够的界面结合力)。同时,离子凝胶表现出优异的传感灵敏度(应变片系数,GF = 1.23 - 2.08),在可穿戴电子产品中显示出广泛的应用潜力。它实现了对微小应变(1 - 5%应变范围)的精确检测和心电图(ECG)信号的高保真采集。本研究拓宽了基于农业木质纤维素残留物的功能材料的设计范式。它还为开发环保型智能传感器提供了一条新的技术途径。