Suppr超能文献

基于记忆特征的多分支网络用于长尾医学图像识别。

MBNM: Multi-branch network based on memory features for long-tailed medical image recognition.

机构信息

School of Computer Science, Beijing University of Posts and Telecommunications, Beijing, 100876, China; Education Department Information Network Engineering Research Center, Beijing University of Posts and Telecommunications, Beijing, 100876, China.

Hebei Eye Hospital, Hebei, 054001, China.

出版信息

Comput Methods Programs Biomed. 2021 Nov;212:106448. doi: 10.1016/j.cmpb.2021.106448. Epub 2021 Oct 2.

Abstract

BACKGROUND AND OBJECTIVES

Deep learning algorithms show revolutionary potential in computer-aided diagnosis. These computer-aided diagnosis techniques often rely on large-scale, balanced standard datasets. However, there are many rare diseases in real clinical scenarios, which makes the medical datasets present a highly imbalanced long-tailed distribution, leading to the poor generalization ability of deep learning models. Currently, most algorithms to solve this problem involve more complex modules and loss functions. But for complicated tasks in the medical domain, usually suffer from issues such as increased inference time and unstable performance. Therefore, it is a great challenge to develop a computer-aided diagnosis algorithm for long-tailed medical data.

METHODS

We proposed the Multi-Branch Network based on Memory Features (MBNM) for Long-Tailed Medical Image Recognition. MBNM includes three branches, where each branch focuses on a different learning task: 1) the regular learning branch learns the generalizable feature representations; 2) the tail learning branch gains extra intra-class diversity for the tail classes through the feature memory module and the improved reverse sampler to improve the classification performance of the tail classes; 3) the fusion balance branch integrates various decision-making advantages and introduces an adaptive loss function to re-balance the classification performance of easy and difficult samples.

RESULTS

We conducted experiments on the multi-disease Ophthalmic OCT datasets with imbalance factors of 98.48 and skin image datasets Skin-7 with imbalance factors of 58.3. The Accuracy, MCR, F1-Score, Precision, and AUC of our model were significantly improved over the strong baselines in the auxiliary diagnosis scenario where the clinical medical data is extremely imbalanced. Furthermore, we demonstrated that MBNM outperforms the state-of-the-art models on the publicly available natural image datasets (CIFAR-10 and CIFAR-100).

CONCLUSIONS

The proposed algorithm can solve the problem of imbalanced data distribution with little added cost. In addition, the memory module does not act in the inference phase, thereby saving inference time. And it shows outstanding performance on medical images and natural images with a variety of imbalance factors.

摘要

背景与目的

深度学习算法在计算机辅助诊断中显示出革命性的潜力。这些计算机辅助诊断技术通常依赖于大规模、平衡的标准数据集。然而,在实际临床场景中有许多罕见疾病,这使得医疗数据集呈现出高度不平衡的长尾分布,导致深度学习模型的泛化能力较差。目前,解决这个问题的大多数算法都涉及更复杂的模块和损失函数。但是,对于医疗领域复杂的任务,通常会存在推理时间增加和性能不稳定等问题。因此,开发用于长尾医疗数据的计算机辅助诊断算法是一项巨大的挑战。

方法

我们提出了基于记忆特征的多分支网络(MBNM)用于长尾医学图像识别。MBNM 包括三个分支,每个分支专注于不同的学习任务:1)常规学习分支学习可泛化的特征表示;2)尾部学习分支通过特征记忆模块和改进的反向采样器为尾部类获得额外的类内多样性,以提高尾部类的分类性能;3)融合平衡分支整合各种决策优势,并引入自适应损失函数重新平衡易样本和难样本的分类性能。

结果

我们在多疾病眼科 OCT 数据集(不平衡因素为 98.48)和皮肤图像数据集 Skin-7(不平衡因素为 58.3)上进行了实验。在临床医疗数据极不平衡的辅助诊断场景中,我们的模型在准确性、MCR、F1-Score、精度和 AUC 方面均显著优于强基线。此外,我们还证明了 MBNM 在公共自然图像数据集(CIFAR-10 和 CIFAR-100)上的表现优于最新模型。

结论

该算法可以解决数据分布不平衡的问题,且成本增加很小。此外,记忆模块在推理阶段不发挥作用,从而节省了推理时间。它在具有多种不平衡因素的医学图像和自然图像上表现出色。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验