Suppr超能文献

从带有标签噪声的长尾图像分类的尾部类别中分离出噪声样本。

Separating Noisy Samples From Tail Classes for Long-Tailed Image Classification With Label Noise.

作者信息

Fang Chaowei, Cheng Lechao, Mao Yining, Zhang Dingwen, Fang Yixiang, Li Guanbin, Qi Huiyan, Jiao Licheng

出版信息

IEEE Trans Neural Netw Learn Syst. 2024 Nov;35(11):16036-16048. doi: 10.1109/TNNLS.2023.3291695. Epub 2024 Oct 29.

Abstract

Most existing methods that cope with noisy labels usually assume that the classwise data distributions are well balanced. They are difficult to deal with the practical scenarios where training samples have imbalanced distributions, since they are not able to differentiate noisy samples from tail classes' clean samples. This article makes an early effort to tackle the image classification task in which the provided labels are noisy and have a long-tailed distribution. To deal with this problem, we propose a new learning paradigm which can screen out noisy samples by matching between inferences on weak and strong data augmentations. A leave-noise-out regularization (LNOR) is further introduced to eliminate the effect of the recognized noisy samples. Besides, we propose a prediction penalty based on the online classwise confidence levels to avoid the bias toward easy classes which are dominated by head classes. Extensive experiments on five datasets including CIFAR-10, CIFAR-100, MNIST, FashionMNIST, and Clothing1M demonstrate that the proposed method outperforms the existing algorithms for learning with long-tailed distribution and label noise.

摘要

大多数现有的处理噪声标签的方法通常假设类内数据分布是平衡的。它们难以处理训练样本分布不均衡的实际场景,因为它们无法区分噪声样本和长尾类别的干净样本。本文早期致力于解决提供的标签有噪声且具有长尾分布的图像分类任务。为了解决这个问题,我们提出了一种新的学习范式,该范式可以通过对弱数据增强和强数据增强的推理进行匹配来筛选出噪声样本。进一步引入了一种留噪声正则化(LNOR)来消除已识别噪声样本的影响。此外,我们基于在线类置信度提出了一种预测惩罚,以避免偏向由头部类别主导的简单类别。在包括CIFAR-10、CIFAR-100、MNIST、FashionMNIST和Clothing1M在内的五个数据集上进行的大量实验表明,所提出的方法优于现有的用于长尾分布和标签噪声学习的算法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验