Development and Homeostasis of the Nervous System Laboratory, The Francis Crick Institute, London, UK.
AhRimmunity Laboratory, The Francis Crick Institute, London, UK.
Nature. 2021 Nov;599(7883):125-130. doi: 10.1038/s41586-021-04006-z. Epub 2021 Oct 20.
Tissue maintenance and repair depend on the integrated activity of multiple cell types. Whereas the contributions of epithelial, immune and stromal cells in intestinal tissue integrity are well understood, the role of intrinsic neuroglia networks remains largely unknown. Here we uncover important roles of enteric glial cells (EGCs) in intestinal homeostasis, immunity and tissue repair. We demonstrate that infection of mice with Heligmosomoides polygyrus leads to enteric gliosis and the upregulation of an interferon gamma (IFNγ) gene signature. IFNγ-dependent gene modules were also induced in EGCs from patients with inflammatory bowel disease. Single-cell transcriptomics analysis of the tunica muscularis showed that glia-specific abrogation of IFNγ signalling leads to tissue-wide activation of pro-inflammatory transcriptional programs. Furthermore, disruption of the IFNγ-EGC signalling axis enhanced the inflammatory and granulomatous response of the tunica muscularis to helminths. Mechanistically, we show that the upregulation of Cxcl10 is an early immediate response of EGCs to IFNγ signalling and provide evidence that this chemokine and the downstream amplification of IFNγ signalling in the tunica muscularis are required for a measured inflammatory response to helminths and resolution of the granulomatous pathology. Our study demonstrates that IFNγ signalling in enteric glia is central to intestinal homeostasis and reveals critical roles of the IFNγ-EGC-CXCL10 axis in immune response and tissue repair after infectious challenge.
组织的维护和修复依赖于多种细胞类型的综合活动。虽然上皮细胞、免疫细胞和基质细胞在肠道组织完整性中的作用已得到充分理解,但内在神经胶质网络的作用在很大程度上仍不清楚。在这里,我们揭示了肠神经胶质细胞(EGC)在肠道稳态、免疫和组织修复中的重要作用。我们证明,感染旋毛虫会导致肠胶质增生和干扰素γ(IFNγ)基因特征的上调。来自炎症性肠病患者的 EGC 也诱导了 IFNγ依赖性基因模块。对肌层的单细胞转录组学分析表明,IFNγ信号在胶质细胞中的特异性阻断会导致广泛的促炎转录程序的激活。此外,破坏 IFNγ-EGC 信号通路增强了肌层对寄生虫的炎症和肉芽肿反应。从机制上讲,我们表明 Cxcl10 的上调是 EGC 对 IFNγ信号的早期即刻反应,并提供证据表明这种趋化因子和 IFNγ信号在肌层中的下游放大是对寄生虫的适度炎症反应和肉芽肿病理的解决所必需的。我们的研究表明,EGC 中的 IFNγ 信号对于肠道稳态至关重要,并揭示了 IFNγ-EGC-CXCL10 轴在感染挑战后免疫反应和组织修复中的关键作用。