Suppr超能文献

一种前列腺癌风险计算器:利用临床和磁共振成像数据预测北美男性的活检结果。

A prostate cancer risk calculator: Use of clinical and magnetic resonance imaging data to predict biopsy outcome in North American men.

作者信息

Kinnaird Adam, Brisbane Wayne, Kwan Lorna, Priester Alan, Chuang Ryan, Barsa Danielle E, Delfin Merdie, Sisk Anthony, Margolis Daniel, Felker Ely, Hu Jim, Marks Leonard S

机构信息

Department of Urology, David Geffen School of Medicine, UCLA, Los Angeles, CA, United States.

Division of Urology, Department of Surgery, University of Alberta, Edmonton, AB, Canada.

出版信息

Can Urol Assoc J. 2022 Mar;16(3):E161-E166. doi: 10.5489/cuaj.7380.

Abstract

INTRODUCTION

A functional tool to optimize patient selection for magnetic resonance imaging (MRI)-guided prostate biopsy (MRGB) is an unmet clinical need. We sought to develop a prostate cancer risk calculator (PCRC-MRI) that combines MRI and clinical characteristics to aid decision-making for MRGB in North American men.

METHODS

Two prospective registries containing 2354 consecutive men undergoing MRGB (September 2009 to April 2019) were analyzed. Patients were randomized into five groups, with one group randomly assigned to be the validation cohort against the other four groups as the discovery cohort. The primary outcome was detection of clinically significant prostate cancer (csPCa) defined as Gleason grade group ≥2. Variables included age, ethnicity, digital rectal exam (DRE), prior biopsy, prostate-specific antigen (PSA), prostate volume, PSA density, and MRI score. Odds ratios (OR) were calculated from multivariate logistic regression comparing two models: one with clinical variables only (clinical) against a second combining clinical variables with MRI data (clinical+MRI).

RESULTS

csPCa was present in 942 (40%) of the 2354 men available for study. The positive and negative predictive values for csPCa in the clinical+MRI model were 57% and 89%, respectively. The area under the curve of the clinical+MRI model was superior to the clinical model in discovery (0.843 vs. 0.707, p<0.0001) and validation (0.888 vs. 0.757, p<0.0001) cohorts. Use of PCRC-MRI would have avoided approximately 16 unnecessary biopsies in every 100 men. Of all variables examined, Asian ethnicity was the most protective factor (OR 0.46, 0.29-0.75) while MRI score 5 indicated greatest risk (OR15.8, 10.5-23.9).

CONCLUSIONS

A risk calculator (PCRC-MRI), based on a large North American cohort, is shown to improve patient selection for MRGB, especially in preventing unnecessary biopsies. This tool is available at https://www.uclahealth.org/urology/prostate-cancer-riskcalculator and may help rationalize biopsy decision-making.

摘要

引言

优化磁共振成像(MRI)引导下前列腺穿刺活检(MRGB)患者选择的实用工具是一项尚未满足的临床需求。我们试图开发一种前列腺癌风险计算器(PCRC-MRI),它结合了MRI和临床特征,以辅助北美男性进行MRGB的决策。

方法

分析了两个前瞻性登记库,其中包含2354名连续接受MRGB的男性(2009年9月至2019年4月)。患者被随机分为五组,其中一组被随机指定为验证队列,其他四组作为发现队列。主要结局是检测到临床显著前列腺癌(csPCa),定义为Gleason分级组≥2。变量包括年龄、种族、直肠指检(DRE)、既往活检、前列腺特异性抗原(PSA)、前列腺体积、PSA密度和MRI评分。通过多因素逻辑回归比较两个模型计算比值比(OR):一个仅包含临床变量(临床模型),另一个将临床变量与MRI数据相结合(临床+MRI模型)。

结果

在可供研究的2354名男性中,942名(40%)存在csPCa。临床+MRI模型中csPCa的阳性和阴性预测值分别为57%和89%。临床+MRI模型的曲线下面积在发现队列(0.843对0.707,p<0.0001)和验证队列(0.888对0.757,p<0.0001)中均优于临床模型。使用PCRC-MRI每100名男性中可避免约16次不必要的活检。在所有检查的变量中,亚洲种族是最具保护作用的因素(OR 0.46,0.29-0.75),而MRI评分为5表明风险最高(OR15.8,10.5-23.9)。

结论

基于北美大型队列的风险计算器(PCRC-MRI)被证明可改善MRGB的患者选择,尤其是在预防不必要的活检方面。该工具可在https://www.uclahealth.org/urology/prostate-cancer-riskcalculator获取,可能有助于使活检决策合理化。

相似文献

8
Repeat Prostate-specific Antigen Testing Improves Risk-based Selection of Men for Prostate Biopsy After Magnetic Resonance Imaging.
Eur Urol Open Sci. 2024 Jun 13;65:21-28. doi: 10.1016/j.euros.2024.05.011. eCollection 2024 Jul.

引用本文的文献

本文引用的文献

1
The Cost of Prostate Biopsies and their Complications: A Summary of Data on All Medicare Fee-for-Service Patients over 2 Years.
Urol Pract. 2020 Mar;7(2):145-151. doi: 10.1097/UPJ.0000000000000072. Epub 2019 May 29.
2
Magnetic Resonance Imaging Guided Biopsy to Evaluate Prostate Cancer Severity in African American Men.
Urol Pract. 2020 Nov;7(6):538-540. doi: 10.1097/UPJ.0000000000000124. Epub 2019 Dec 19.
3
MRI-Targeted, Systematic, and Combined Biopsy for Prostate Cancer Diagnosis.
N Engl J Med. 2020 Mar 5;382(10):917-928. doi: 10.1056/NEJMoa1910038.
4
Cancer statistics, 2020.
CA Cancer J Clin. 2020 Jan;70(1):7-30. doi: 10.3322/caac.21590. Epub 2020 Jan 8.
5
External validation of novel magnetic resonance imaging-based models for prostate cancer prediction.
BJU Int. 2020 Mar;125(3):407-416. doi: 10.1111/bju.14958. Epub 2019 Dec 20.
6
Developments in MRI-targeted prostate biopsy.
Curr Opin Urol. 2020 Jan;30(1):1-8. doi: 10.1097/MOU.0000000000000683.
8
Variation in Magnetic Resonance Imaging-Ultrasound Fusion Targeted Biopsy Outcomes in Asian American Men: A Multicenter Study.
J Urol. 2020 Mar;203(3):530-536. doi: 10.1097/JU.0000000000000534. Epub 2019 Sep 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验