Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, 94608, United States; Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, United States; Department of Chemical & Biomolecular Engineering, University of California, Berkeley, CA, 94720, United States.
Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, 94608, United States; State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, School of Life Sciences, Hubei University, Wuhan, Hubei, 430062, PR China; Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, United States.
Metab Eng. 2021 Nov;68:210-219. doi: 10.1016/j.ymben.2021.10.007. Epub 2021 Oct 18.
Terpenes constitute the largest class of natural products with over 55,000 compounds with versatile applications including drugs and biofuels. Introducing structural modifications to terpenes through metabolic engineering is an efficient and sustainable way to improve their properties. Here, we report the optimization of the lepidopteran mevalonate (LMVA) pathway towards the efficient production of isopentenyl pyrophosphate (IPP) analogs as terpene precursors. First, we linked the LMVA pathway to NudB, a promiscuous phosphatase, resulting in the production of the six-carbon analog of 3-methyl-3-buten-1-ol (isoprenol), 3-ethyl-3-buten-1-ol (C6-isoprenol). Using C6-isoprenol as the final product, we then engineered the LMVA pathway by redirecting its upstream portion from a thiolase-dependent pathway to a beta-oxidation pathway. The beta-oxidation LMVA pathway transforms valeric acid, a platform chemical that can be produced from biomass, into C6-isoprenol at a titer of 110.3 mg/L, improved from 5.5 mg/L by the thiolase LMVA pathway, which used propionic acid as a feedstock. Knockout of the E. coli endogenous thiolase genes further improved the C6-isoprenol titer to 390 mg/L, implying efficient production of homo isopentenyl pyrophosphate (HIPP). The beta-oxidation LMVA-NudB pathway also converts butanoic acid and hexanoic acid into isoprenol and isoprenol's seven-carbon analog, 3-propyl-3-buten-1-ol (C7-isoprenol), respectively, suggesting the beta-oxidation LMVA pathway produces IPP and C7-IPP from the corresponding fatty acids. Fuel property tests revealed the longer chain isoprenol analogs have lower water solubilities, similar or higher energy densities, and comparable research octane number (RON) boosting effects to isopentenols. This work not only optimizes the LMVA pathway, setting the basis for homoterpene biosynthesis to expand terpene chemical space, but provides an efficient pathway to produce isoprenol analogs as next-generation biofuels from sustainable feedstocks.
萜类化合物是最大的天然产物类别,拥有超过 55000 种化合物,具有广泛的应用,包括药物和生物燃料。通过代谢工程对萜类化合物进行结构修饰是一种有效且可持续的方法,可以改善它们的性质。在这里,我们报告了对鳞翅目甲羟戊酸 (LMVA) 途径的优化,以高效生产异戊烯焦磷酸 (IPP) 类似物作为萜烯前体。首先,我们将 LMVA 途径与 NudB 连接,NudB 是一种混杂的磷酸酶,导致产生六碳醇 3-甲基-3-丁烯-1-醇 (异戊烯醇),3-乙基-3-丁烯-1-醇 (C6-异戊烯醇)。使用 C6-异戊烯醇作为最终产物,我们通过将其上游部分从硫解酶依赖途径重新定向到β-氧化途径来工程化 LMVA 途径。β-氧化 LMVA 途径将可以从生物质中生产的平台化学品正缬草酸转化为 C6-异戊烯醇,其滴度为 110.3mg/L,优于使用丙酸作为原料的硫解酶 LMVA 途径的 5.5mg/L。敲除大肠杆菌内源性硫解酶基因进一步将 C6-异戊烯醇的滴度提高到 390mg/L,暗示高效生产同异戊烯焦磷酸 (HIPP)。β-氧化 LMVA-NudB 途径还将正丁酸和己酸分别转化为异戊烯醇和异戊烯醇的七碳醇类似物 3-丙基-3-丁烯-1-醇 (C7-异戊烯醇),表明β-氧化 LMVA 途径可从相应的脂肪酸生成 IPP 和 C7-IPP。燃料性能测试表明,较长链的异戊烯醇类似物具有较低的水溶性、相似或更高的能量密度以及与异戊烯醇相当的研究辛烷值 (RON) 提升效果。这项工作不仅优化了 LMVA 途径,为同源萜类化合物生物合成扩展萜类化合物化学空间奠定了基础,而且还提供了一种从可持续原料生产异戊烯醇类似物作为下一代生物燃料的有效途径。