IEEE Trans Biomed Circuits Syst. 2021 Dec;15(6):1196-1209. doi: 10.1109/TBCAS.2021.3122017. Epub 2022 Feb 17.
Hearth Rate (HR) monitoring is increasingly performed in wrist-worn devices using low-cost photoplethysmography (PPG) sensors. However, Motion Artifacts (MAs) caused by movements of the subject's arm affect the performance of PPG-based HR tracking. This is typically addressed coupling the PPG signal with acceleration measurements from an inertial sensor. Unfortunately, most standard approaches of this kind rely on hand-tuned parameters, which impair their generalization capabilities and their applicability to real data in the field. In contrast, methods based on deep learning, despite their better generalization, are considered to be too complex to deploy on wearable devices. In this work, we tackle these limitations, proposing a design space exploration methodology to automatically generate a rich family of deep Temporal Convolutional Networks (TCNs) for HR monitoring, all derived from a single "seed" model. Our flow involves a cascade of two Neural Architecture Search (NAS) tools and a hardware-friendly quantizer, whose combination yields both highly accurate and extremely lightweight models. When tested on the PPG-Dalia dataset, our most accurate model sets a new state-of-the-art in Mean Absolute Error. Furthermore, we deploy our TCNs on an embedded platform featuring a STM32WB55 microcontroller, demonstrating their suitability for real-time execution. Our most accurate quantized network achieves 4.41 Beats Per Minute (BPM) of Mean Absolute Error (MAE), with an energy consumption of 47.65 mJ and a memory footprint of 412 kB. At the same time, the smallest network that obtains a MAE 8 BPM, among those generated by our flow, has a memory footprint of 1.9 kB and consumes just 1.79 mJ per inference.
心率(HR)监测越来越多地在腕戴设备中使用低成本光电容积脉搏波(PPG)传感器进行。然而,由于受试者手臂的运动而产生的运动伪影(MA)会影响基于 PPG 的 HR 跟踪的性能。这通常通过将 PPG 信号与来自惯性传感器的加速度测量值进行耦合来解决。不幸的是,大多数此类标准方法都依赖于手动调整的参数,这会降低它们的泛化能力以及在现场实际数据中的适用性。相比之下,基于深度学习的方法虽然具有更好的泛化能力,但被认为过于复杂,无法在可穿戴设备上部署。在这项工作中,我们解决了这些限制,提出了一种设计空间探索方法,用于自动生成用于 HR 监测的丰富的深度学习时间卷积网络(TCN)家族,所有这些都是从单个“种子”模型衍生而来的。我们的流程涉及两个神经架构搜索(NAS)工具和一个硬件友好型量化器的级联,其组合产生了高度准确和极其轻量级的模型。在 PPG-Dalia 数据集上进行测试时,我们最准确的模型在平均绝对误差方面创造了新的基准。此外,我们将我们的 TCN 部署在具有 STM32WB55 微控制器的嵌入式平台上,证明了它们适用于实时执行。我们最准确的量化网络在平均绝对误差方面达到了 4.41 次/分钟(BPM),能量消耗为 47.65 毫焦耳,内存占用为 412 千字节。同时,在我们的流程生成的网络中,获得平均绝对误差 8 BPM 的最小网络的内存占用为 1.9 kB,每次推理仅消耗 1.79 毫焦耳。