基于可穿戴光电容积脉搏波描记术和加速度信号的深度神经网络心率估计可行性研究

Feasibility Study of Deep Neural Network for Heart Rate Estimation from Wearable Photoplethysmography and Acceleration Signals.

作者信息

Chung Heewon, Ko Hoon, Lee Hooseok, Lee Jinseok

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2019 Jul;2019:3633-3636. doi: 10.1109/EMBC.2019.8857618.

Abstract

Heart rate (HR) estimation using wearable reflectance-type photoplethysmographic (PPG) signals is challenging due to low signal-to-noise ratio (SNR). Especially during intensive exercise, motion artifacts (MAs) overwhelm PPG signals in an unpredictable way. To overcome the issue, an acceleration signal as a reference signal has been adopted by simultaneously measuring with PPG signal. However, MAs are frequently uncorrelated with accelerometer signals under various activities. In this paper, we present a learning-based framework for HR estimation. The proposed framework is based on the deep neural network (DNN). For the feasibility study, we presented a simple network with two fully connected layers. We first extracted power spectra from the measured PPG signal and the acceleration signal. The two power spectra were then used for the input layer in the network. In addition, to inform the PPG signal quality, we added the acceleration signal intensity for the input layer. The proposed simple DNN network was trained for 10 epochs in IEEE Signal Processing Cup 2015 (ISPC) dataset (n=23). Subsequently, the trained network provided low mean absolute error (MAE) of 2.31 bpm in the ISPC dataset. We further tested the network on the new BAMI dataset (n=5), and found that it provided 4.72 bpm of MAE. On the other hand, the MAE without the learning frame was 15.73 bpm. In this study, we found that the simple DNN technique is effective. More training issues were also discussed.

摘要

由于信噪比(SNR)较低,利用可穿戴反射式光电容积脉搏波描记法(PPG)信号进行心率(HR)估计具有挑战性。特别是在剧烈运动期间,运动伪影(MA)会以不可预测的方式淹没PPG信号。为了克服这个问题,通过与PPG信号同时测量采用了加速度信号作为参考信号。然而,在各种活动下,MA通常与加速度计信号不相关。在本文中,我们提出了一种基于学习的HR估计框架。所提出的框架基于深度神经网络(DNN)。为了进行可行性研究,我们提出了一个具有两个全连接层的简单网络。我们首先从测量的PPG信号和加速度信号中提取功率谱。然后将这两个功率谱用于网络的输入层。此外,为了告知PPG信号质量,我们将加速度信号强度添加到输入层。所提出的简单DNN网络在2015年IEEE信号处理杯(ISPC)数据集(n = 23)中训练了10个轮次。随后,训练后的网络在ISPC数据集中提供了2.31次/分钟的低平均绝对误差(MAE)。我们进一步在新的BAMI数据集(n = 5)上测试了该网络,发现它提供了4.72次/分钟的MAE。另一方面,没有学习框架时的MAE为15.73次/分钟。在本研究中,我们发现简单的DNN技术是有效的。还讨论了更多的训练问题。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索