Suppr超能文献

智能宿主工程在生物技术中代谢通量优化的应用。

Intelligent host engineering for metabolic flux optimisation in biotechnology.

机构信息

Novo Nordisk Foundation Centre for Biosustainability, Technical University of Denmark, Building 220, Kemitorvet, 2800 Kgs. Lyngby, Denmark.

Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown St, Liverpool L69 7ZB, U.K.

出版信息

Biochem J. 2021 Oct 29;478(20):3685-3721. doi: 10.1042/BCJ20210535.

Abstract

Optimising the function of a protein of length N amino acids by directed evolution involves navigating a 'search space' of possible sequences of some 20N. Optimising the expression levels of P proteins that materially affect host performance, each of which might also take 20 (logarithmically spaced) values, implies a similar search space of 20P. In this combinatorial sense, then, the problems of directed protein evolution and of host engineering are broadly equivalent. In practice, however, they have different means for avoiding the inevitable difficulties of implementation. The spare capacity exhibited in metabolic networks implies that host engineering may admit substantial increases in flux to targets of interest. Thus, we rehearse the relevant issues for those wishing to understand and exploit those modern genome-wide host engineering tools and thinking that have been designed and developed to optimise fluxes towards desirable products in biotechnological processes, with a focus on microbial systems. The aim throughput is 'making such biology predictable'. Strategies have been aimed at both transcription and translation, especially for regulatory processes that can affect multiple targets. However, because there is a limit on how much protein a cell can produce, increasing kcat in selected targets may be a better strategy than increasing protein expression levels for optimal host engineering.

摘要

通过定向进化优化长度为 N 个氨基酸的蛋白质的功能,涉及到在大约 20N 的可能序列的“搜索空间”中进行导航。优化对宿主性能有重大影响的 P 蛋白的表达水平,每个 P 蛋白可能也需要 20(对数间隔)个值,这意味着需要类似的 20P 的搜索空间。从这种组合意义上讲,定向蛋白质进化和宿主工程的问题大致相当。然而,在实践中,它们有不同的方法来避免实施中不可避免的困难。代谢网络中表现出的剩余容量意味着宿主工程可能允许对感兴趣的目标进行大量通量增加。因此,我们为那些希望理解和利用旨在优化生物技术过程中流向理想产品的通量的现代全基因组宿主工程工具和思维的人重新审视了相关问题,重点是微生物系统。目标是“使这种生物学具有可预测性”。策略既针对转录又针对翻译,特别是针对可能影响多个目标的调节过程。然而,由于细胞能够产生的蛋白质数量有限,因此在选定的目标中增加 kcat 可能比增加蛋白质表达水平更有利于优化宿主工程。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/67e7/8589332/79048f3ce403/BCJ-478-3685-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验