Suppr超能文献

关于用于新型冠状病毒(COVID-19)诊断的深度学习技术的综述

A Review on Deep Learning Techniques for the Diagnosis of Novel Coronavirus (COVID-19).

作者信息

Islam Md Milon, Karray Fakhri, Alhajj Reda, Zeng Jia

机构信息

Centre for Pattern Analysis and Machine IntelligenceDepartment of Electrical and Computer EngineeringUniversity of Waterloo Waterloo ON N2L 3G1 Canada.

Department of Computer ScienceUniversity of Calgary Calgary AB T2N 1N4 Canada.

出版信息

IEEE Access. 2021 Feb 10;9:30551-30572. doi: 10.1109/ACCESS.2021.3058537. eCollection 2021.

Abstract

Novel coronavirus (COVID-19) outbreak, has raised a calamitous situation all over the world and has become one of the most acute and severe ailments in the past hundred years. The prevalence rate of COVID-19 is rapidly rising every day throughout the globe. Although no vaccines for this pandemic have been discovered yet, deep learning techniques proved themselves to be a powerful tool in the arsenal used by clinicians for the automatic diagnosis of COVID-19. This paper aims to overview the recently developed systems based on deep learning techniques using different medical imaging modalities like Computer Tomography (CT) and X-ray. This review specifically discusses the systems developed for COVID-19 diagnosis using deep learning techniques and provides insights on well-known data sets used to train these networks. It also highlights the data partitioning techniques and various performance measures developed by researchers in this field. A taxonomy is drawn to categorize the recent works for proper insight. Finally, we conclude by addressing the challenges associated with the use of deep learning methods for COVID-19 detection and probable future trends in this research area. The aim of this paper is to facilitate experts (medical or otherwise) and technicians in understanding the ways deep learning techniques are used in this regard and how they can be potentially further utilized to combat the outbreak of COVID-19.

摘要

新型冠状病毒(COVID-19)的爆发在全球引发了一场灾难,已成为过去一百年来最严重的疾病之一。全球范围内,COVID-19的患病率每天都在迅速上升。尽管尚未发现针对这种大流行病的疫苗,但深度学习技术已证明自身是临床医生用于自动诊断COVID-19的有力工具。本文旨在概述最近基于深度学习技术开发的系统,这些系统使用了不同的医学成像模态,如计算机断层扫描(CT)和X射线。本综述特别讨论了使用深度学习技术开发的用于COVID-19诊断的系统,并提供了用于训练这些网络的知名数据集的相关见解。它还强调了该领域研究人员开发的数据划分技术和各种性能指标。绘制了一个分类法,以便对近期工作进行恰当的洞察。最后,我们通过阐述使用深度学习方法进行COVID-19检测所面临的挑战以及该研究领域可能的未来趋势来得出结论。本文的目的是帮助专家(医学专家或其他领域专家)和技术人员了解深度学习技术在这方面的应用方式,以及如何进一步利用它们来抗击COVID-19的爆发。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7012/8675557/45ed46d5ec61/islam1-3058537.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验