Institute of Tianjin Key Laboratory for Control Theory & Applications in Complicated Systems, Tianjin University of Technology, Tianjin, 300384, China.
Department of Electrical Engineering, Tshwane University of Technology, Pretoria, 0001, South Africa.
Med Biol Eng Comput. 2021 Nov;59(11-12):2205-2217. doi: 10.1007/s11517-021-02449-0. Epub 2021 Oct 21.
To reduce the motor imagery brain-computer interface (MI-BCI) illiteracy phenomenon and improve the classification accuracy, this paper proposed a novel method combining paradigm selection and Riemann distance classification. Firstly, a novel sensitivity-based paradigm selection (SPS) algorithm is designed for the optimization of classification to find the best classification pattern through a sensitive indicator. Then, a generalized Riemann minimum distance mean (GRMDM) classifier is proposed by introducing a weight factor to fuse the Log-Euclidean Metric classifier and the Riemannian Stein divergence classifier. The experimental results show that the proposed method achieves a better performance for multi-class motor imagery tasks. The average classification accuracy on the BCI competition IV dataset2a is 80.98%, which is 11.04% higher than Stein divergence classifier on the original two-class paradigm. Furthermore, the proposed method demonstrates its capacity on reducing MI-BCI illiteracy. Graphical abstract Here we investigate whether the BCI illiteracy phenomenon can be reduced through sensitivity-based paradigm selection (SPS) method and generalized Riemann minimum distance mean (GRMDM) classifier when performing motor imagery tasks.
为了减少运动想象脑-机接口(MI-BCI)的文盲现象并提高分类准确性,本文提出了一种结合范式选择和黎曼距离分类的新方法。首先,设计了一种基于灵敏度的新范式选择(SPS)算法,用于通过敏感指标优化分类,以找到最佳的分类模式。然后,通过引入权重因子,融合对数欧几里得度量分类器和黎曼斯坦纳散度分类器,提出了广义黎曼最小距离均值(GRMDM)分类器。实验结果表明,所提出的方法在多类运动想象任务中具有更好的性能。在 BCI 竞赛 IV 数据集 2a 上的平均分类准确率为 80.98%,比原始双类范式下的 Stein 散度分类器高 11.04%。此外,该方法还展示了减少 MI-BCI 文盲的能力。