Department of Electrical and Electronics Engineering, Thiagarajar College of Engineering, Madurai 625015, India.
J Neurosci Methods. 2022 Jan 15;366:109425. doi: 10.1016/j.jneumeth.2021.109425. Epub 2021 Nov 26.
A motor imagery (MI) based brain computer interface (BCI) is a challenging nonmuscular connection system used to independently perform movement-related tasks. It is gaining increasing prominence in helping paralyzed individuals communicate with the real world. Achieving better classification accuracy is the major concern in the field of motor imagery-based BCI. To upgrade the classification performance, relevant features play a vital role. The relevant features can be selected by the extreme gradient Bayesian optimization (XGBO) method.
In this paper, a combination of time-, frequency-, and spatial-related MI features are extracted to design a reliable MI-BCI system. The proposed method incorporates the XGBO algorithm for feature selection and the random forest for the classification of EEG signals. The potency of the proposed system was investigated using two public EEG datasets (BCI Competition III dataset IIIa and dataset IVa). A novel XGBO algorithm increases the accuracy and reduces the time consumption by reducing the dimensionality of features. The proposed algorithm selects the minimum number of features that increase the computational efficacy for MI-based BCI systems.
The proposed method is compared with ANOVA, sequential forward selection, recursive feature elimination, and LASSO methods and the accuracy rate is increased with the lowest computation time.
The proposed method achieves mean accuracies of 94.44% and 88.72% and classification errors of 5.56% and 11.28% for Datasets IIIa and IVa, respectively. It outperforms four state-of-art methods with 0.87% and 0.59% increases in the accuracy for Datasets IIIa and IVa, respectively.
基于运动想象(MI)的脑机接口(BCI)是一种具有挑战性的非肌肉连接系统,用于独立执行与运动相关的任务。它在帮助瘫痪患者与现实世界进行交流方面越来越受到关注。在基于运动想象的 BCI 领域,提高分类准确性是主要关注点。为了提高分类性能,相关特征起着至关重要的作用。相关特征可以通过极端梯度提升贝叶斯优化(XGBO)方法进行选择。
本文提取了时间、频率和空间相关的 MI 特征组合,以设计可靠的 MI-BCI 系统。该方法结合了 XGBO 算法进行特征选择和随机森林进行 EEG 信号分类。使用两个公共 EEG 数据集(BCI 竞赛 III 数据集 IIIa 和数据集 IVa)对所提出的系统的效能进行了研究。通过使用 XGBO 算法,新算法提高了准确性并通过减少特征的维数降低了时间消耗。所提出的算法选择了最小数量的特征,从而提高了基于 MI 的 BCI 系统的计算效率。
所提出的方法与 ANOVA、顺序前向选择、递归特征消除和 LASSO 方法进行了比较,并且精度提高了,计算时间最短。
所提出的方法分别在数据集 IIIa 和 IVa 上实现了 94.44%和 88.72%的平均准确率和 5.56%和 11.28%的分类误差。与四种最先进的方法相比,在数据集 IIIa 和 IVa 上分别提高了 0.87%和 0.59%的准确率。