Appel K Wyat, Bash Jesse O, Fahey Kathleen M, Foley Kristen M, Gilliam Robert C, Hogrefe Christian, Hutzell William T, Kang Daiwen, Mathur Rohit, Murphy Benjamin N, Napelenok Sergey L, Nolte Christopher G, Pleim Jonathan E, Pouliot George A, Pye Havala O T, Ran Limei, Roselle Shawn J, Sarwar Golam, Schwede Donna B, Sidi Fahim I, Spero Tanya L, Wong David C
Center for Environmental Measurement and Modeling, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA.
Geosci Model Dev. 2021 May 20;14:2867-2897. doi: 10.5194/gmd-14-2867-2021.
The Community Multiscale Air Quality (CMAQ) model version 5.3 (CMAQ53), released to the public in August 2019 and followed by version 5.3.1 (CMAQ531) in December 2019, contains numerous science updates, enhanced functionality, and improved computation efficiency relative to the previous version of the model, 5.2.1 (CMAQ521). Major science advances in the new model include a new aerosol module (AERO7) with significant updates to secondary organic aerosol (SOA) chemistry, updated chlorine chemistry, updated detailed bromine and iodine chemistry, updated simple halogen chemistry, the addition of dimethyl sulfide (DMS) chemistry in the CB6r3 chemical mechanism, updated M3Dry bidirectional deposition model, and the new Surface Tiled Aerosol and Gaseous Exchange (STAGE) bidirectional deposition model. In addition, support for the Weather Research and Forecasting (WRF) model's hybrid vertical coordinate (HVC) was added to CMAQ53 and the Meteorology-Chemistry Interface Processor (MCIP) version 5.0 (MCIP50). Enhanced functionality in CMAQ53 includes the new Detailed Emissions Scaling, Isolation and Diagnostic (DESID) system for scaling incoming emissions to CMAQ and reading multiple gridded input emission files. Evaluation of CMAQ531 was performed by comparing monthly and seasonal mean daily 8 h average (MDA8) O and daily PM values from several CMAQ531 simulations to a similarly configured CMAQ521 simulation encompassing 2016. For MDA8 O, CMAQ531 has higher O in the winter versus CMAQ521, due primarily to reduced dry deposition to snow, which strongly reduces wintertime O bias (2-4 ppbv monthly average). MDA8 O is lower with CMAQ531 throughout the rest of the year, particularly in spring, due in part to reduced O from the lateral boundary conditions (BCs), which generally increases MDA8 O bias in spring and fall ( 0.5 μg m). For daily 24 h average PM, CMAQ531 has lower concentrations on average in spring and fall, higher concentrations in summer, and similar concentrations in winter to CMAQ521, which slightly increases bias in spring and fall and reduces bias in summer. Comparisons were also performed to isolate updates to several specific aspects of the modeling system, namely the lateral BCs, meteorology model version, and the deposition model used. Transitioning from a hemispheric CMAQ (HCMAQ) version 5.2.1 simulation to a HCMAQ version 5.3 simulation to provide lateral BCs contributes to higher O mixing ratios in the regional CMAQ simulation in higher latitudes during winter (due to the decreased O dry deposition to snow in CMAQ53) and lower O mixing ratios in middle and lower latitudes year-round (due to reduced O over the ocean with CMAQ53). Transitioning from WRF version 3.8 to WRF version 4.1.1 with the HVC resulted in consistently higher (1.0-1.5 ppbv) MDA8 O mixing ratios and higher PM concentrations (0.1-0.25 μg m) throughout the year. Finally, comparisons of the M3Dry and STAGE deposition models showed that MDA8 O is generally higher with M3Dry outside of summer, while PM is consistently higher with STAGE due to differences in the assumptions of particle deposition velocities to non-vegetated surfaces and land use with short vegetation (e.g., grasslands) between the two models. For ambient NH, STAGE has slightly higher concentrations and smaller bias in the winter, spring, and fall, while M3Dry has higher concentrations and smaller bias but larger error and lower correlation in the summer.
社区多尺度空气质量(CMAQ)模型版本5.3(CMAQ53)于2019年8月向公众发布,随后在2019年12月发布了版本5.3.1(CMAQ531)。相对于该模型的上一版本5.2.1(CMAQ521),CMAQ53包含众多科学更新、增强的功能以及提高的计算效率。新模型的主要科学进展包括一个新的气溶胶模块(AERO7),其中对二次有机气溶胶(SOA)化学有重大更新、更新的氯化学、更新的详细溴和碘化学、更新的简单卤素化学、在CB6r3化学机制中添加了二甲基硫(DMS)化学、更新的M3Dry双向沉积模型以及新的表面平铺气溶胶和气态交换(STAGE)双向沉积模型。此外,CMAQ53和气象 - 化学接口处理器(MCIP)版本5.0(MCIP50)增加了对天气研究与预报(WRF)模型的混合垂直坐标(HVC)的支持。CMAQ53中的增强功能包括用于将输入排放按比例缩放到CMAQ并读取多个网格化输入排放文件的新的详细排放缩放、隔离和诊断(DESID)系统。通过将来自几个CMAQ531模拟的每月和季节性平均每日8小时平均(MDA8)O和每日PM值与包含2016年的类似配置的CMAQ521模拟进行比较,对CMAQ531进行了评估。对于MDA8 O,CMAQ531在冬季的O浓度高于CMAQ521,这主要是由于对雪的干沉降减少,这大大降低了冬季O偏差(每月平均2 - 4 ppbv)。在一年中的其余时间,CMAQ531的MDA8 O较低,特别是在春季,部分原因是来自侧边界条件(BCs)的O减少,这通常会增加春季和秋季的MDA8 O偏差(0.5 μg/m³)。对于每日24小时平均PM,CMAQ531在春季和秋季的平均浓度较低,夏季浓度较高,冬季浓度与CMAQ521相似,这在春季和秋季略微增加了偏差,在夏季减少了偏差。还进行了比较以分离建模系统几个特定方面的更新,即侧BCs、气象模型版本和使用的沉积模型。从半球CMAQ(HCMAQ)版本5.2.1模拟过渡到HCMAQ版本5.3模拟以提供侧BCs,有助于在冬季高纬度地区的区域CMAQ模拟中获得更高的O混合比(由于CMAQ53中O对雪的干沉降减少)以及全年中低纬度地区较低的O混合比(由于CMAQ53中海洋上空的O减少)。从WRF版本3.8过渡到具有HVC的WRF版本4.1.1导致全年MDA8 O混合比持续更高(1.0 - 1.5 ppbv)和PM浓度更高(0.1 - 0.25 μg/m³)。最后,对M3Dry和STAGE沉积模型的比较表明,在夏季以外,M3Dry的MDA8 O通常较高,而由于两个模型对非植被表面和短植被(如草地)土地利用的颗粒沉积速度假设不同,STAGE的PM始终较高。对于环境NH₃,STAGE在冬季、春季和秋季的浓度略高且偏差较小,而M3Dry在夏季的浓度较高且偏差较小但误差较大且相关性较低。