Suppr超能文献

CMAQv5.2中的半挥发性一次有机气溶胶和参数化全燃烧二次有机气溶胶:对源强和分配的影响

Semivolatile POA and parameterized total combustion SOA in CMAQv5.2: impacts on source strength and partitioning.

作者信息

Murphy Benjamin N, Woody Matthew C, Jimenez Jose L, Carlton Ann Marie G, Hayes Patrick L, Liu Shang, Ng Nga L, Russell Lynn M, Setyan Ari, Xu Lu, Young Jeff, Zaveri Rahul A, Zhang Qi, Pye Havala O T

机构信息

National Exposure Research Laboratory, US Environmental Protection Agency, Research Triangle Park, NC, USA.

Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO, USA.

出版信息

Atmos Chem Phys. 2017;17:11107-11133. doi: 10.5194/acp-17-11107-2017.

Abstract

Mounting evidence from field and laboratory observations coupled with atmospheric model analyses shows that primary combustion emissions of organic compounds dynamically partition between the vapor and particulate phases, especially as near-source emissions dilute and cool to ambient conditions. The most recent version of the Community Multiscale Air Quality model version 5.2 (CMAQv5.2) accounts for the semivolatile partitioning and gas-phase aging of these primary organic aerosol (POA) compounds consistent with experimentally derived parameterizations. We also include a new surrogate species, potential secondary organic aerosol from combustion emissions (pcSOA), which provides a representation of the secondary organic aerosol (SOA) from anthropogenic combustion sources that could be missing from current chemical transport model predictions. The reasons for this missing mass likely include the following: (1) unspeciated semivolatile and intermediate volatility organic compound (SVOC and IVOC, respectively) emissions missing from current inventories, (2) multigenerational aging of organic vapor products from known SOA precursors (e.g., toluene, alkanes), (3) underestimation of SOA yields due to vapor wall losses in smog chamber experiments, and (4) reversible organic compounds-water interactions and/or aqueous-phase processing of known organic vapor emissions. CMAQ predicts the spatially averaged contribution of pcSOA to OA surface concentrations in the continental United States to be 38.6 and 23.6 % in the 2011 winter and summer, respectively. Whereas many past modeling studies focused on a particular measurement campaign, season, location, or model configuration, we endeavor to evaluate the model and important uncertain parameters with a comprehensive set of United States-based model runs using multiple horizontal scales (4 and 12 km), gas-phase chemical mechanisms, and seasons and years. The model with representation of semivolatile POA improves predictions of hourly OA observations over the traditional nonvolatile model at sites during field campaigns in southern California (CalNex, May-June 2010), northern California (CARES, June 2010), the southeast US (SOAS, June 2013; SEARCH, January and July, 2011). Model improvements manifest better correlations (e.g., the correlation coefficient at Pasadena at night increases from 0.38 to 0.62) and reductions in underprediction during the photochemically active afternoon period (e.g., bias at Pasadena from -5.62 to -2.42 μg m). Daily averaged predictions of observations at routine-monitoring networks from simulations over the continental US (CONUS) in 2011 show modest improvement during winter, with mean biases reducing from 1.14 to 0.73μg m, but less change in the summer when the decreases from POA evaporation were similar to the magnitude of added SOA mass. Because the model-performance improvement realized by including the relatively simple pcSOA approach is similar to that of more-complicated parameterizations of OA formation and aging, we recommend caution when applying these more-complicated approaches as they currently rely on numerous uncertain parameters. The pcSOA parameters optimized for performance at the southern and northern California sites lead to higher OA formation than is observed in the CONUS evaluation. This may be due to any of the following: variations in real pcSOA in different regions or time periods, too-high concentrations of other OA sources in the model that are important over the larger domain, or other model issues such as loss processes. This discrepancy is likely regionally and temporally dependent and driven by interferences from factors like varying emissions and chemical regimes.

摘要

来自实地和实验室观测以及大气模型分析的越来越多的证据表明,有机化合物的一次燃烧排放会在气相和颗粒相之间动态分配,尤其是当近源排放稀释并冷却至环境条件时。最新版本的社区多尺度空气质量模型5.2版(CMAQv5.2)考虑了这些一次有机气溶胶(POA)化合物的半挥发性分配和气相老化,这与实验得出的参数化方法一致。我们还纳入了一种新的替代物种,即燃烧排放产生的潜在二次有机气溶胶(pcSOA),它代表了当前化学传输模型预测中可能缺失的人为燃烧源产生的二次有机气溶胶(SOA)。这种质量缺失的原因可能包括以下几点:(1)当前清单中未明确列出的半挥发性和中等挥发性有机化合物(分别为SVOC和IVOC)排放;(2)已知SOA前体(如甲苯、烷烃)产生的有机蒸汽产物的多代老化;(3)由于烟雾箱实验中的蒸汽壁损失导致SOA产率被低估;(4)可逆的有机化合物 - 水相互作用和/或已知有机蒸汽排放的水相处理。CMAQ预测,在美国大陆,pcSOA对OA表面浓度的空间平均贡献在2011年冬季和夏季分别为38.6%和23.6%。尽管过去许多建模研究集中在特定的测量活动、季节、地点或模型配置上,但我们努力通过使用多种水平尺度(4公里和12公里)、气相化学机制以及季节和年份,在美国进行全面的模型运行来评估模型和重要的不确定参数。在南加州(2010年5 - 6月的CalNex)、北加州(2010年6月的CARES)、美国东南部(2013年6月的SOAS;2011年1月和7月的SEARCH)的实地考察期间,与传统的非挥发性模型相比,包含半挥发性POA的模型改进了对各站点每小时OA观测的预测。模型改进表现为更好的相关性(例如,帕萨迪纳夜间的相关系数从0.38提高到0.62)以及在光化学活跃的下午时段预测不足的减少(例如,帕萨迪纳的偏差从 - 5.62降至 - 2.42μg/m³)。2011年在美国大陆(CONUS)进行的模拟对常规监测网络观测的日平均预测显示,冬季有适度改善,平均偏差从1.14降至0.73μg/m³,但夏季变化较小部分原因是POA蒸发的减少与新增SOA质量的幅度相似。由于纳入相对简单的pcSOA方法所实现的模型性能改进与更复杂的OA形成和老化参数化方法相似,我们建议在应用这些更复杂的方法时要谨慎,因为它们目前依赖众多不确定参数。针对南加州和北加州站点性能优化的pcSOA参数导致的OA形成高于在CONUS评估中观测到的情况。这可能是由于以下任何原因:不同区域或时间段实际pcSOA的变化、模型中在更大区域重要的其他OA源浓度过高,或其他模型问题如损失过程。这种差异可能在区域和时间上是依赖的,并受到诸如排放和化学状态变化等因素的干扰。

相似文献

6
The formation and evolution of secondary organic aerosol during haze events in Beijing in wintertime.
Sci Total Environ. 2020 Feb 10;703:134937. doi: 10.1016/j.scitotenv.2019.134937. Epub 2019 Nov 2.
8
Unspeciated organic emissions from combustion sources and their influence on the secondary organic aerosol budget in the United States.
Proc Natl Acad Sci U S A. 2014 Jul 22;111(29):10473-8. doi: 10.1073/pnas.1323740111. Epub 2014 Jul 7.

引用本文的文献

2
Emissions of Condensable Organic Aerosols from Stationary Combustion Sources over Japan.
Atmos Environ (1994). 2022 Nov 15;289. doi: 10.1016/j.atmosenv.2022.119319.
3
Improving the particle dry deposition scheme in the CMAQ photochemical modeling system.
Atmos Environ (1994). 2022 Nov 15;289. doi: 10.1016/j.atmosenv.2022.119343.
4
Analyzing the Role of Chemical Mechanism Choice in Wintertime PM Modeling for Temperature Inversion-Prone Areas.
ACS EST Air. 2025 Jan 10;2(2):162-174. doi: 10.1021/acsestair.4c00139. eCollection 2025 Feb 14.
5
Combustion-related isoprene contributes substantially to the formation of wintertime secondary organic aerosols.
Natl Sci Rev. 2025 Jan 2;12(3):nwae474. doi: 10.1093/nsr/nwae474. eCollection 2025 Mar.
6
Source-specific bias correction of US background and anthropogenic ozone modeled in CMAQ.
Geosci Model Dev. 2024 Nov 26;17(22):8373-8397. doi: 10.5194/gmd-17-8373-2024.
7
Impacts of condensable particulate matter on atmospheric organic aerosols and fine particulate matter (PM) in China.
Atmos Chem Phys. 2022 Sep 13;22(17):11845-11866. doi: 10.5194/acp-22-11845-2022.

本文引用的文献

2
Description and evaluation of the Community Multiscale Air Quality (CMAQ) modeling system version 5.1.
Geosci Model Dev. 2017;10(4):1703-1732. doi: 10.5194/gmd-10-1703-2017.
3
On the implications of aerosol liquid water and phase separation for organic aerosol mass.
Atmos Chem Phys. 2017;17(1):343-369. doi: 10.5194/acp-17-343-2017.
5
Global distribution of particle phase state in atmospheric secondary organic aerosols.
Nat Commun. 2017 Apr 21;8:15002. doi: 10.1038/ncomms15002.
6
Chemical Characterization of Water-Soluble Organic Aerosol in Contrasting Rural and Urban Environments in the Southeastern United States.
Environ Sci Technol. 2017 Jan 3;51(1):78-88. doi: 10.1021/acs.est.6b05002. Epub 2016 Dec 20.
7
Ambient Gas-Particle Partitioning of Tracers for Biogenic Oxidation.
Environ Sci Technol. 2016 Sep 20;50(18):9952-62. doi: 10.1021/acs.est.6b01674. Epub 2016 Sep 2.
9
Exploring Divergent Volatility Properties from Yield and Thermodenuder Measurements of Secondary Organic Aerosol from α-Pinene Ozonolysis.
Environ Sci Technol. 2016 Jun 7;50(11):5740-9. doi: 10.1021/acs.est.6b00303. Epub 2016 May 19.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验