Suppr超能文献

在CMAQv5.2中模拟闪电产生的一氧化氮:性能评估

Simulating lightning NO production in CMAQv5.2: performance evaluations.

作者信息

Kang Daiwen, Foley Kristen M, Mathur Rohit, Roselle Shawn J, Pickering Kenneth E, Allen Dale J

机构信息

Center for Environmental Measurement and Modeling, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA.

Department of Atmospheric and Oceanic Science, University of Maryland, College Park, MD, USA.

出版信息

Geosci Model Dev. 2019;12(10):4409-4424. doi: 10.5194/gmd-12-4409-2019.

Abstract

This study assesses the impact of the lightning nitric oxide (LNO) production schemes in the Community Multiscale Air Quality (CMAQ) model on ground-level air quality as well as aloft atmospheric chemistry through detailed evaluation of model predictions of nitrogen oxides (NO ) and ozone (O) with corresponding observations for the US. For ground-level evaluations, hourly O and NO values from the U.S. EPA Air Quality System (AQS) monitoring network are used to assess the impact of different LNO schemes on model prediction of these species in time and space. Vertical evaluations are performed using ozonesonde and P-3B aircraft measurements during the Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality (DISCOVER-AQ) campaign conducted in the Baltimore- Washington region during July 2011. The impact on wet deposition of nitrate is assessed using measurements from the National Atmospheric Deposition Program's National Trends Network (NADP NTN). Compared with the Base model (without LNO), the impact of LNO on surface O varies from region to region depending on the Base model conditions. Overall statistics suggest that for regions where surface O mixing ratios are already overestimated, the incorporation of additional NO from lightning generally increased model overestimation of mean daily maximum 8 h (DM8HR) O by 1-2 ppb. In regions where surface O is underestimated by the Base model, LNO can significantly reduce the underestimation and bring model predictions close to observations. Analysis of vertical profiles reveals that LNO can significantly improve the vertical structure of modeled O distributions by reducing underestimation aloft and to a lesser degree decreasing overestimation near the surface. Since the Base model underestimates the wet deposition of nitrate in most regions across the modeling domain with the exception of the Pacific Coast, the inclusion of LNO leads to reduction in biases and errors and an increase in correlation coefficients at almost all the NADP NTN sites. Among the three LNO schemes described in Kang et al. (2019), the hNLDN scheme, which is implemented using hourly observed lightning flash data from National Lightning Detection Network (NLDN), performs best for comparisons with ground-level values, vertical profiles, and wet deposition of nitrate; the mNLDN scheme (the monthly NLDN-based scheme) performed slightly better. However, when observed lightning flash data are not available, the linear regression-based parameterization scheme, pNLDN, provides an improved estimate for nitrate wet deposition compared to the base simulation that does not include LNO.

摘要

本研究通过详细评估美国氮氧化物(NO )和臭氧(O)的模型预测值与相应观测值,来评估社区多尺度空气质量(CMAQ)模型中的闪电一氧化氮(LNO)生成方案对地面空气质量以及高空大气化学的影响。对于地面评估,使用美国环境保护局空气质量系统(AQS)监测网络的每小时O和NO 值来评估不同LNO方案在时间和空间上对这些物种模型预测的影响。垂直评估是在2011年7月于巴尔的摩 - 华盛顿地区开展的“从与空气质量相关的柱面和垂直解析观测中获取地表状况信息”(DISCOVER - AQ)活动期间,利用臭氧探空仪和P - 3B飞机测量数据进行的。使用国家大气沉降计划的国家趋势网络(NADP NTN)的测量数据评估对硝酸盐湿沉降的影响。与基础模型(无LNO)相比,LNO对地表O的影响因基础模型条件而异。总体统计数据表明,对于地表O混合比已被高估的地区,纳入来自闪电的额外NO通常会使模型对平均每日最大8小时(DM8HR)O的高估增加1 - 2 ppb。在基础模型低估地表O的地区,LNO可显著减少低估情况,并使模型预测接近观测值。垂直剖面分析表明,LNO可通过减少高空的低估情况,并在较小程度上降低地表附近的高估情况,显著改善模拟O分布的垂直结构。由于基础模型在建模区域的大多数地区(除太平洋海岸外)低估了硝酸盐的湿沉降,纳入LNO会导致偏差和误差减小,并且几乎在所有NADP NTN站点的相关系数都会增加。在Kang等人(2019年)描述的三种LNO方案中,使用来自国家闪电探测网络(NLDN)的每小时观测闪电闪光数据实施的hNLDN方案,在与地面值、垂直剖面和硝酸盐湿沉降的比较中表现最佳;mNLDN方案(基于NLDN月度数据的方案)表现稍好。然而,当没有观测到的闪电闪光数据时,与不包括LNO的基础模拟相比,基于线性回归的参数化方案pNLDN对硝酸盐湿沉降提供了更好的估计。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/87d6/6913039/78c4d1211edf/nihms-1543825-f0001.jpg

相似文献

1
Simulating lightning NO production in CMAQv5.2: performance evaluations.
Geosci Model Dev. 2019;12(10):4409-4424. doi: 10.5194/gmd-12-4409-2019.
2
Simulating lightning NO production in CMAQv5.2: evolution of scientific updates.
Geosci Model Dev. 2019 Jul 18;12(7):3071-3083. doi: 10.5194/gmd-12-3071-2019.
6
Impact of particulate nitrate photolysis on air quality over the Northern Hemisphere.
Sci Total Environ. 2024 Mar 20;917:170406. doi: 10.1016/j.scitotenv.2024.170406. Epub 2024 Jan 26.
7
Description and evaluation of the Community Multiscale Air Quality (CMAQ) modeling system version 5.1.
Geosci Model Dev. 2017;10(4):1703-1732. doi: 10.5194/gmd-10-1703-2017.
9
The influence of lightning activity on NO and O in the Pearl River Delta region.
Sci Total Environ. 2023 Dec 1;902:166001. doi: 10.1016/j.scitotenv.2023.166001. Epub 2023 Aug 2.

引用本文的文献

3
Improving the Characterization of Natural Emissions in CMAQ.
EM (Pittsburgh Pa). 2021 Oct 1;October 2021(10):1-7.
5
Volatile Chemical Product Enhancements to Criteria Pollutants in the United States.
Environ Sci Technol. 2022 Jun 7;56(11):6905-6913. doi: 10.1021/acs.est.1c04298. Epub 2021 Nov 15.
6
The Community Multiscale Air Quality (CMAQ) model versions 5.3 and 5.3.1: system updates and evaluation.
Geosci Model Dev. 2021 May 20;14:2867-2897. doi: 10.5194/gmd-14-2867-2021.
9
Furthering a partnership: Air quality modeling and improving public health.
J Air Waste Manag Assoc. 2021 Jun;71(6):682-688. doi: 10.1080/10962247.2021.1876180. Epub 2021 Feb 5.
10
Tracking and predicting the African COVID-19 pandemic.
medRxiv. 2020 Nov 16:2020.11.13.20231241. doi: 10.1101/2020.11.13.20231241.

本文引用的文献

1
Simulating lightning NO production in CMAQv5.2: evolution of scientific updates.
Geosci Model Dev. 2019 Jul 18;12(7):3071-3083. doi: 10.5194/gmd-12-3071-2019.
3
Description and evaluation of the Community Multiscale Air Quality (CMAQ) modeling system version 5.1.
Geosci Model Dev. 2017;10(4):1703-1732. doi: 10.5194/gmd-10-1703-2017.
4
Ozone trends across the United States over a period of decreasing NOx and VOC emissions.
Environ Sci Technol. 2015 Jan 6;49(1):186-95. doi: 10.1021/es504514z. Epub 2014 Dec 17.
5
The New England Air Quality Forecasting Pilot Program: development of an evaluation protocol and performance benchmark.
J Air Waste Manag Assoc. 2005 Dec;55(12):1782-96. doi: 10.1080/10473289.2005.10464775.
6
Increase in tropospheric nitrogen dioxide over China observed from space.
Nature. 2005 Sep 1;437(7055):129-32. doi: 10.1038/nature04092.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验