Department of Surgery, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States.
Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States.
Biochemistry. 2021 Nov 9;60(44):3292-3301. doi: 10.1021/acs.biochem.1c00555. Epub 2021 Oct 22.
Membrane proteins represent a large family of proteins that perform vital physiological roles and represent key drug targets. Despite their importance, bioanalytical methods aiming to comprehensively characterize the post-translational modification (PTM) of membrane proteins remain challenging compared to other classes of proteins in part because of their inherent low expression and hydrophobicity. The inward rectifier potassium channel (Kir) 2.1, an integral membrane protein, is critical for the maintenance of the resting membrane potential and phase-3 repolarization of the cardiac action potential in the heart. The importance of this channel to cardiac physiology is highlighted by the recognition of several sudden arrhythmic death syndromes, Andersen-Tawil and short QT syndromes, which are associated with loss or gain of function mutations in Kir2.1, often triggered by changes in the β-adrenergic tone. Therefore, understanding the PTMs of this channel (particularly β-adrenergic tone-driven phosphorylation) is important for arrhythmia prevention. Here, we developed a proteomic method, integrating both top-down (intact protein) and bottom-up (after enzymatic digestion) proteomic analyses, to characterize the PTMs of recombinant wild-type and mutant Kir2.1, successfully mapping five novel sites of phosphorylation and confirming a sixth site. Our study provides a framework for future work to assess the role of PTMs in regulating Kir2.1 functions.
膜蛋白是一大类具有重要生理功能的蛋白质,也是关键的药物靶点。尽管膜蛋白非常重要,但与其他类型的蛋白质相比,旨在全面描述其翻译后修饰(PTM)的生物分析方法仍然具有挑战性,部分原因是其内在的低表达量和疏水性。内向整流钾通道(Kir)2.1 是一种整合膜蛋白,对于维持心脏动作电位的静息膜电位和 3 相复极化至关重要。该通道对心脏生理学的重要性体现在几种心律失常猝死综合征的认识上,如 Andersen-Tawil 和短 QT 综合征,这些综合征与 Kir2.1 的功能丧失或获得突变有关,通常由 β-肾上腺素能张力的变化引发。因此,了解该通道的 PTM(特别是 β-肾上腺素能张力驱动的磷酸化)对于预防心律失常很重要。在这里,我们开发了一种蛋白质组学方法,整合了自上而下(完整蛋白质)和自下而上(酶解后)的蛋白质组学分析,以描述重组野生型和突变型 Kir2.1 的 PTM,成功绘制了五个新的磷酸化位点,并确认了第六个位点。我们的研究为未来评估 PTM 在调节 Kir2.1 功能中的作用提供了一个框架。