Suppr超能文献

小分子利用导致 c9ALS/FTD 的 RNA 重复扩展中的隐藏结构特征,并挽救病理特征。

A Small Molecule Exploits Hidden Structural Features within the RNA Repeat Expansion That Causes c9ALS/FTD and Rescues Pathological Hallmarks.

机构信息

Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, Florida 33458, United States.

Department of Chemistry and Biochemistry, Florida Atlantic University, Jupiter, Florida 33458, United States.

出版信息

ACS Chem Neurosci. 2021 Nov 3;12(21):4076-4089. doi: 10.1021/acschemneuro.1c00470. Epub 2021 Oct 22.

Abstract

The hexanucleotide repeat expansion GGGGCC [r(GC)] within intron 1 of causes genetically defined amyotrophic lateral sclerosis and frontotemporal dementia, collectively named c9ALS/FTD. , the repeat expansion causes neurodegeneration via deleterious phenotypes stemming from r(GC) RNA gain- and loss-of-function mechanisms. The r(GC) RNA folds into both a hairpin structure with repeating 1 × 1 nucleotide GG internal loops and a G-quadruplex structure. Here, we report the identification of a small molecule (CB253) that selectively binds the hairpin form of r(GC). Interestingly, the small molecule binds to a previously unobserved conformation in which the RNA forms 2 × 2 nucleotide GG internal loops, as revealed by a series of binding and structural studies. NMR and molecular dynamics simulations suggest that the r(GC) hairpin interconverts between 1 × 1 and 2 × 2 internal loops through the process of strand slippage. We provide experimental evidence that CB253 binding indeed shifts the equilibrium toward the 2 × 2 GG internal loop conformation, inhibiting mechanisms that drive c9ALS/FTD pathobiology, such as repeat-associated non-ATG translation formation of stress granules and defective nucleocytoplasmic transport in various cellular models of c9ALS/FTD.

摘要

六核苷酸重复扩增 GGGGCC[r(GC)]位于 1 号内含子中,导致遗传性定义的肌萎缩侧索硬化症和额颞叶痴呆,统称为 c9ALS/FTD。研究表明,这种重复扩增通过 r(GC)RNA 的获得和丧失功能机制引起神经退行性变。r(GC)RNA 折叠成具有重复 1×1 核苷酸 GG 内部环的发夹结构和 G-四链体结构。在这里,我们报告了一种小分子 (CB253) 的鉴定,该小分子选择性结合 r(GC)的发夹形式。有趣的是,该小分子结合到一个以前未观察到的构象中,其中 RNA 形成 2×2 核苷酸 GG 内部环,这是通过一系列结合和结构研究揭示的。NMR 和分子动力学模拟表明,r(GC)发夹通过链滑动在 1×1 和 2×2 内部环之间相互转换。我们提供了实验证据,证明 CB253 结合确实将平衡向 2×2 GG 内部环构象转移,抑制了导致 c9ALS/FTD 病理生物学的机制,例如重复相关非 ATG 翻译形成应激颗粒和核质运输缺陷在各种 c9ALS/FTD 的细胞模型中。

相似文献

1
A Small Molecule Exploits Hidden Structural Features within the RNA Repeat Expansion That Causes c9ALS/FTD and Rescues Pathological Hallmarks.
ACS Chem Neurosci. 2021 Nov 3;12(21):4076-4089. doi: 10.1021/acschemneuro.1c00470. Epub 2021 Oct 22.
2
The Hairpin Form of r(GC) in c9ALS/FTD Is Repeat-Associated Non-ATG Translated and a Target for Bioactive Small Molecules.
Cell Chem Biol. 2019 Feb 21;26(2):179-190.e12. doi: 10.1016/j.chembiol.2018.10.018. Epub 2018 Nov 29.
3
Structural Features of Small Molecules Targeting the RNA Repeat Expansion That Causes Genetically Defined ALS/FTD.
ACS Chem Biol. 2020 Dec 18;15(12):3112-3123. doi: 10.1021/acschembio.0c00049. Epub 2020 Nov 16.
5
6
A blood-brain penetrant RNA-targeted small molecule triggers elimination of r(GC) in c9ALS/FTD via the nuclear RNA exosome.
Proc Natl Acad Sci U S A. 2022 Nov 29;119(48):e2210532119. doi: 10.1073/pnas.2210532119. Epub 2022 Nov 21.
8
All in the Family: Repeats and ALS/FTD.
Trends Neurosci. 2018 May;41(5):247-250. doi: 10.1016/j.tins.2018.03.010.
9
C9orf72 ALS-FTD: recent evidence for dysregulation of the autophagy-lysosome pathway at multiple levels.
Autophagy. 2021 Nov;17(11):3306-3322. doi: 10.1080/15548627.2021.1872189. Epub 2021 Feb 26.
10
Disease Mechanisms of Repeat Expansions.
Cold Spring Harb Perspect Med. 2018 Apr 2;8(4):a024224. doi: 10.1101/cshperspect.a024224.

引用本文的文献

1
The evolution and application of RNA-focused small molecule libraries.
RSC Chem Biol. 2025 Feb 13;6(4):510-527. doi: 10.1039/d4cb00272e. eCollection 2025 Apr 2.
2
Therapeutic targeting of RNA for neurological and neuromuscular disease.
Genes Dev. 2024 Sep 19;38(15-16):698-717. doi: 10.1101/gad.351612.124.
4
Mapping of repeat-associated non-AUG (RAN) translation knowledge: A bibliometric analysis.
Heliyon. 2024 Apr 2;10(8):e29141. doi: 10.1016/j.heliyon.2024.e29141. eCollection 2024 Apr 30.
5
Molecular basis of RNA-binding and autoregulation by the cancer-associated splicing factor RBM39.
Nat Commun. 2023 Sep 4;14(1):5366. doi: 10.1038/s41467-023-40254-5.
8
A blood-brain penetrant RNA-targeted small molecule triggers elimination of r(GC) in c9ALS/FTD via the nuclear RNA exosome.
Proc Natl Acad Sci U S A. 2022 Nov 29;119(48):e2210532119. doi: 10.1073/pnas.2210532119. Epub 2022 Nov 21.

本文引用的文献

1
Structural Features of Small Molecules Targeting the RNA Repeat Expansion That Causes Genetically Defined ALS/FTD.
ACS Chem Biol. 2020 Dec 18;15(12):3112-3123. doi: 10.1021/acschembio.0c00049. Epub 2020 Nov 16.
2
How We Think about Targeting RNA with Small Molecules.
J Med Chem. 2020 Sep 10;63(17):8880-8900. doi: 10.1021/acs.jmedchem.9b01927. Epub 2020 Mar 26.
3
Probing RNA Conformational Equilibria within the Functional Cellular Context.
Cell Rep. 2020 Feb 25;30(8):2472-2480.e4. doi: 10.1016/j.celrep.2020.02.004.
6
Translation of the intrinsically disordered protein α-synuclein is inhibited by a small molecule targeting its structured mRNA.
Proc Natl Acad Sci U S A. 2020 Jan 21;117(3):1457-1467. doi: 10.1073/pnas.1905057117. Epub 2020 Jan 3.
7
Demonstration that Small Molecules can Bind and Stabilize Low-abundance Short-lived RNA Excited Conformational States.
J Mol Biol. 2020 Feb 14;432(4):1297-1304. doi: 10.1016/j.jmb.2019.12.009. Epub 2019 Dec 18.
8
Exposing Hidden High-Affinity RNA Conformational States.
J Am Chem Soc. 2020 Jan 15;142(2):907-921. doi: 10.1021/jacs.9b10535. Epub 2019 Dec 31.
9
Structural insights into synthetic ligands targeting A-A pairs in disease-related CAG RNA repeats.
Nucleic Acids Res. 2019 Nov 18;47(20):10906-10913. doi: 10.1093/nar/gkz832.
10
Characterizing micro-to-millisecond chemical exchange in nucleic acids using off-resonance R relaxation dispersion.
Prog Nucl Magn Reson Spectrosc. 2019 Jun-Aug;112-113:55-102. doi: 10.1016/j.pnmrs.2019.05.002. Epub 2019 May 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验