Ciani G F, Csedreki L, Rapagnani D, Aliotta M, Balibrea-Correa J, Barile F, Bemmerer D, Best A, Boeltzig A, Broggini C, Bruno C G, Caciolli A, Cavanna F, Chillery T, Colombetti P, Corvisiero P, Cristallo S, Davinson T, Depalo R, Di Leva A, Elekes Z, Ferraro F, Fiore E, Formicola A, Fülöp Zs, Gervino G, Guglielmetti A, Gustavino C, Gyürky Gy, Imbriani G, Junker M, Lugaro M, Marigo P, Masha E, Menegazzo R, Mossa V, Pantaleo F R, Paticchio V, Perrino R, Piatti D, Prati P, Schiavulli L, Stöckel K, Straniero O, Szücs T, Takács M P, Terrasi F, Vescovi D, Zavatarelli S
Gran Sasso Science Institute, Viale F. Crispi 7, 67100 L'Aquila, Italy.
INFN, Laboratori Nazionali del Gran Sasso (LNGS), 67100 Assergi, Italy.
Phys Rev Lett. 2021 Oct 8;127(15):152701. doi: 10.1103/PhysRevLett.127.152701.
One of the main neutron sources for the astrophysical s process is the reaction ^{13}C(α,n)^{16}O, taking place in thermally pulsing asymptotic giant branch stars at temperatures around 90 MK. To model the nucleosynthesis during this process the reaction cross section needs to be known in the 150-230 keV energy window (Gamow peak). At these sub-Coulomb energies, cross section direct measurements are severely affected by the low event rate, making us rely on input from indirect methods and extrapolations from higher-energy direct data. This leads to an uncertainty in the cross section at the relevant energies too high to reliably constrain the nuclear physics input to s-process calculations. We present the results from a new deep-underground measurement of ^{13}C(α,n)^{16}O, covering the energy range 230-300 keV, with drastically reduced uncertainties over previous measurements and for the first time providing data directly inside the s-process Gamow peak. Selected stellar models have been computed to estimate the impact of our revised reaction rate. For stars of nearly solar composition, we find sizeable variations of some isotopes, whose production is influenced by the activation of close-by branching points that are sensitive to the neutron density, in particular, the two radioactive nuclei ^{60}Fe and ^{205}Pb, as well as ^{152}Gd.
天体物理s过程的主要中子源之一是反应(^{13}C(α,n)^{16}O),它发生在热脉冲渐近巨星分支恒星中,温度约为90 MK。为了模拟这个过程中的核合成,需要知道150 - 230 keV能量窗口(伽莫夫峰)内的反应截面。在这些亚库仑能量下,由于事件率低,直接测量截面受到严重影响,这使得我们依赖间接方法的输入以及从高能直接数据进行的外推。这导致相关能量下截面的不确定性过高,无法可靠地约束s过程计算中的核物理输入。我们展示了一项新的(^{13}C(α,n)^{16}O)地下深层测量结果,其覆盖能量范围为230 - 300 keV,与之前的测量相比不确定性大幅降低,并且首次直接提供了s过程伽莫夫峰内的数据。已计算选定的恒星模型以估计我们修正后的反应率的影响。对于几乎是太阳成分的恒星,我们发现一些同位素存在显著变化,其产生受到对中子密度敏感的附近分支点激活的影响,特别是两个放射性核素(^{60}Fe)和(^{205}Pb),以及(^{152}Gd)。