Suppr超能文献

一种用于预测肉鸡舍环境适宜性的启发式和数据挖掘模型。

A Heuristic and Data Mining Model for Predicting Broiler House Environment Suitability.

作者信息

Martinez Angel Antonio Gonzalez, Nääs Irenilza de Alencar, de Carvalho-Curi Thayla Morandi Ridolfi, Abe Jair Minoro, da Silva Lima Nilsa Duarte

机构信息

Graduate Program in Production Engineering, Universidade Paulista, R. Dr. Bacelar 1212, São Paulo 04026-002, Brazil.

Independent Researcher, Campinas 13100-650, Brazil.

出版信息

Animals (Basel). 2021 Sep 24;11(10):2780. doi: 10.3390/ani11102780.

Abstract

The proper combination of environment and flock-based variables plays a critical role in broiler production. However, the housing environment control is mainly focused on temperature monitoring during the broiler growth process. The present study developed a novel predictive model to predict the broiler () rearing conditions' suitability using a data-mining process centered on flock-based and environmental variables. Data were recorded inside four commercial controlled environment broiler houses. The data analysis was conducted in three steps. First, we performed an exploratory and descriptive analysis of the environmental data. In the second step, we labeled the target variable that led to a specific broiler-rearing scenario depending on the age of the birds, the environmental dry-bulb temperature and relative humidity, the ammonia concentration, and the ventilation rate. The output (final rearing condition) was discretized into four categories ('Excellent', 'Good', 'Moderate', and 'Inappropriate'). In the third step, we used the dataset to develop tree models using the data-mining process. The random-tree model only presented accuracy for predicting the 'Excellent' and 'Moderate' rearing conditions. The decision-tree model had high accuracy and indicated that broiler age, relative humidity, and ammonia concentration play a critical role in proper rearing conditions. Using a large amount of data allows the data-mining approach to building up 'if-then' rules that indicate suitable environmental control decision-making by broiler farmers.

摘要

环境因素与鸡群相关变量的恰当组合在肉鸡生产中起着关键作用。然而,在肉鸡生长过程中,鸡舍环境控制主要集中在温度监测上。本研究开发了一种新型预测模型,通过以鸡群和环境变量为中心的数据挖掘过程来预测肉鸡饲养条件的适宜性。数据记录于四个商业可控环境肉鸡舍内。数据分析分三步进行。首先,我们对环境数据进行了探索性和描述性分析。第二步,根据鸡的年龄、环境干球温度和相对湿度、氨气浓度以及通风率,标记导致特定肉鸡饲养场景的目标变量。输出结果(最终饲养条件)被离散化为四类(“优秀”、“良好”、“中等”和“不适宜”)。第三步,我们使用该数据集通过数据挖掘过程开发树模型。随机树模型仅在预测“优秀”和“中等”饲养条件方面具有准确性。决策树模型具有较高的准确性,表明肉鸡年龄、相对湿度和氨气浓度在适宜的饲养条件中起着关键作用。使用大量数据使得数据挖掘方法能够建立“如果……那么……”规则,为肉鸡养殖户指明合适的环境控制决策方向。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4d7e/8532747/83a8626b5f17/animals-11-02780-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验