Suppr超能文献

利用加速度计数据进行马术跳跃和盛装舞步训练活动检测

Horse Jumping and Dressage Training Activity Detection Using Accelerometer Data.

作者信息

Eerdekens Anniek, Deruyck Margot, Fontaine Jaron, Damiaans Bert, Martens Luc, De Poorter Eli, Govaere Jan, Plets David, Joseph Wout

机构信息

WAVES-IMEC, Department of Information Technology, Ghent University-IMEC, 9052 Ghent, Belgium.

IDLab-IMEC, Department of Information Technology, Ghent University-IMEC, 9052 Ghent, Belgium.

出版信息

Animals (Basel). 2021 Oct 7;11(10):2904. doi: 10.3390/ani11102904.

Abstract

Equine training activity detection will help to track and enhance the performance and fitness level of riders and their horses. Currently, the equestrian world is eager for a simple solution that goes beyond detecting basic gaits, yet current technologies fall short on the level of user friendliness and detection of main horse training activities. To this end, we collected leg accelerometer data of 14 well-trained horses during jumping and dressage trainings. For the first time, 6 jumping training and 25 advanced horse dressage activities are classified using specifically developed models based on a neural network. A jumping training could be classified with a high accuracy of 100 %, while a dressage training could be classified with an accuracy of 96.29%. Assigning the dressage movements to 11, 6 or 4 superclasses results in higher accuracies of 98.87%, 99.10% and 100%, respectively. Furthermore, during dressage training, the side of movement could be identified with an accuracy of 97.08%. In addition, a velocity estimation model was developed based on the measured velocities of seven horses performing the collected, working, and extended gaits during a dressage training. For the walk, trot, and canter paces, the velocities could be estimated accurately with a low root mean square error of 0.07 m/s, 0.14 m/s, and 0.42 m/s, respectively.

摘要

马匹训练活动检测将有助于跟踪和提高骑手及其马匹的表现和健康水平。目前,马术界渴望一种超越基本步态检测的简单解决方案,但当前技术在用户友好性和主要马匹训练活动检测水平上存在不足。为此,我们收集了14匹训练有素的马在跳跃和盛装舞步训练期间的腿部加速度计数据。首次使用基于神经网络专门开发的模型对6种跳跃训练和25种高级马匹盛装舞步活动进行了分类。跳跃训练的分类准确率高达100%,而盛装舞步训练的分类准确率为96.29%。将盛装舞步动作分为11个、6个或4个超类,准确率分别提高到98.87%、99.10%和100%。此外,在盛装舞步训练期间,运动方向的识别准确率为97.08%。此外,基于在盛装舞步训练期间对7匹马执行收集、工作和伸展步态时测量的速度,开发了一个速度估计模型。对于慢步、快步和跑步步伐,速度可以分别以0.07米/秒、0.14米/秒和0.42米/秒的低均方根误差准确估计。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1791/8532712/0b6518874598/animals-11-02904-g001.jpg

相似文献

1
Horse Jumping and Dressage Training Activity Detection Using Accelerometer Data.
Animals (Basel). 2021 Oct 7;11(10):2904. doi: 10.3390/ani11102904.
2
Energy expenditure of horse riding.
Eur J Appl Physiol. 2000 Aug;82(5-6):499-503. doi: 10.1007/s004210000207.
3
[Specific riding styles are associated with specific effects on bodily posture control].
Sportverletz Sportschaden. 2008 Jun;22(2):93-9. doi: 10.1055/s-2008-1027394.
4
Early evaluation of dressage ability in different breeds.
Equine Vet J Suppl. 2002 Sep(34):319-24. doi: 10.1111/j.2042-3306.2002.tb05440.x.
6
A scoping review of determinants of performance in dressage.
PeerJ. 2020 Apr 24;8:e9022. doi: 10.7717/peerj.9022. eCollection 2020.
7
Kinematics of saddle and rider in high-level dressage horses performing collected walk on a treadmill.
Equine Vet J. 2010 May;42(4):340-5. doi: 10.1111/j.2042-3306.2010.00063.x.
9
Lumbar Spine Loading During Dressage Riding.
J Sport Rehabil. 2020 Mar 1;29(3):315-319. doi: 10.1123/jsr.2019-0266.
10
It's all about the sex, or is it? Humans, horses and temperament.
PLoS One. 2019 May 14;14(5):e0216699. doi: 10.1371/journal.pone.0216699. eCollection 2019.

引用本文的文献

1
Comparison of the Prevalence and Location of Trigger Points in Dressage and Show-Jumping Horses.
Animals (Basel). 2025 May 27;15(11):1558. doi: 10.3390/ani15111558.
2
Detecting Equine Gaits Through Rider-Worn Accelerometers.
Animals (Basel). 2025 Apr 8;15(8):1080. doi: 10.3390/ani15081080.
5
Recent Advances in Smart Farming.
Animals (Basel). 2022 Mar 11;12(6):705. doi: 10.3390/ani12060705.

本文引用的文献

3
Infrared Thermography Applied to Monitoring Musculoskeletal Adaptation to Training in Thoroughbred Race Horses.
J Equine Vet Sci. 2020 Apr;87:102935. doi: 10.1016/j.jevs.2020.102935. Epub 2020 Jan 22.
4
A Method to Estimate Horse Speed per Stride from One IMU with a Machine Learning Method.
Sensors (Basel). 2020 Jan 17;20(2):518. doi: 10.3390/s20020518.
5
Prediction of load in a long bone using an artificial neural network prediction algorithm.
J Mech Behav Biomed Mater. 2020 Feb;102:103527. doi: 10.1016/j.jmbbm.2019.103527. Epub 2019 Nov 11.
7
Accelerometer activity tracking in horses and the effect of pasture management on time budget.
Equine Vet J. 2019 Nov;51(6):840-845. doi: 10.1111/evj.13130. Epub 2019 Jun 17.
8
Evaluation of the confusion matrix method in the validation of an automated system for measuring feeding behaviour of cattle.
Behav Processes. 2018 Mar;148:56-62. doi: 10.1016/j.beproc.2018.01.004. Epub 2018 Jan 9.
9
Exercise testing in Warmblood sport horses under field conditions.
Vet J. 2014 Oct;202(1):11-9. doi: 10.1016/j.tvjl.2014.07.019. Epub 2014 Jul 31.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验