Wieland Annalena, Strissel Pamela L, Schorle Hannah, Bakirci Ezgi, Janzen Dieter, Beckmann Matthias W, Eckstein Markus, Dalton Paul D, Strick Reiner
Laboratory for Molecular Medicine, Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Department of Gynecology and Obstetrics, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuernberg, Universitaetsstrasse 21-23, 91054 Erlangen, Germany.
Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Krankenhausstrasse 8-10, 91054 Erlangen, Germany.
Cancers (Basel). 2021 Oct 14;13(20):5144. doi: 10.3390/cancers13205144.
Glioblastoma multiforme (GBM) and metastatic triple-negative breast cancer (TNBC) with mutations often lead to brain dissemination with poor patient outcome, thus new therapeutic targets are needed. To understand signaling, controlling the dynamics and mechanics of brain tumor cell migration, we implemented GBM and TNBC cell lines and designed 3D aligned microfibers and scaffolds mimicking brain structures.
3D microfibers and scaffolds were printed using melt electrowriting. GBM and TNBC cell lines with opposing PTEN genotypes were analyzed with RHO-ROCK-PTEN inhibitors and PTEN rescue using live-cell imaging. RNA-sequencing and qPCR of tumor cells in 3D with microfibers were performed, while scanning electron microscopy and confocal microscopy addressed cell morphology.
In contrast to the PTEN wildtype, GBM and TNBC cells with PTEN loss of function yielded enhanced durotaxis, topotaxis, adhesion, amoeboid migration on 3D microfibers and significant high RHOB expression. Functional studies concerning RHOB-ROCK-PTEN signaling confirmed the essential role for the above cellular processes.
This study demonstrates a significant role of the genotype and RHOB expression for durotaxis, adhesion and migration dependent on 3D. GBM and TNBC cells with PTEN loss of function have an affinity for stiff brain structures promoting metastasis. 3D microfibers represent an important tool to model brain metastasizing tumor cells, where RHO-inhibitors could play an essential role for improved therapy.
多形性胶质母细胞瘤(GBM)和具有特定突变的转移性三阴性乳腺癌(TNBC)常导致脑转移,患者预后较差,因此需要新的治疗靶点。为了解控制脑肿瘤细胞迁移动力学和力学的信号传导,我们采用了GBM和TNBC细胞系,并设计了模拟脑结构的3D排列微纤维和支架。
使用熔体静电纺丝法打印3D微纤维和支架。使用RHO-ROCK-PTEN抑制剂并通过活细胞成像进行PTEN挽救,分析具有相反PTEN基因型的GBM和TNBC细胞系。对3D微纤维中的肿瘤细胞进行RNA测序和qPCR,同时通过扫描电子显微镜和共聚焦显微镜观察细胞形态。
与PTEN野生型相比,功能缺失的GBM和TNBC细胞在3D微纤维上表现出更强的趋硬性、趋拓扑性、粘附性、阿米巴样迁移以及显著高表达的RHOB。关于RHOB-ROCK-PTEN信号传导的功能研究证实了上述细胞过程的重要作用。
本研究表明基因型和RHOB表达在依赖3D的趋硬性、粘附和迁移中起重要作用。功能缺失的GBM和TNBC细胞对促进转移的坚硬脑结构具有亲和力。3D微纤维是模拟脑转移肿瘤细胞的重要工具,其中RHO抑制剂可能在改善治疗中发挥重要作用。