Suppr超能文献

利用基于聚乙二醇的水凝胶构建生物工程三维脑肿瘤模型,以阐明基质硬度对胶质母细胞瘤细胞行为的影响。

Bioengineered 3D brain tumor model to elucidate the effects of matrix stiffness on glioblastoma cell behavior using PEG-based hydrogels.

作者信息

Wang Christine, Tong Xinming, Yang Fan

机构信息

Department of Bioengineering, Stanford University , Stanford, California 94305, United States.

出版信息

Mol Pharm. 2014 Jul 7;11(7):2115-25. doi: 10.1021/mp5000828. Epub 2014 Apr 29.

Abstract

Glioblastoma (GBM) is the most common and aggressive form of primary brain tumor with a median survival of 12-15 months, and the mechanisms underlying GBM tumor progression remain largely elusive. Given the importance of tumor niche signaling in driving GBM progression, there is a strong need to develop in vitro models to facilitate analysis of brain tumor cell-niche interactions in a physiologically relevant and controllable manner. Here we report the development of a bioengineered 3D brain tumor model to help elucidate the effects of matrix stiffness on GBM cell fate using poly(ethylene-glycol) (PEG)-based hydrogels with brain-mimicking biochemical and mechanical properties. We have chosen PEG given its bioinert nature and tunable physical property, and the resulting hydrogels allow tunable matrix stiffness without changing the biochemical contents. To facilitate cell proliferation and migration, CRGDS and a MMP-cleavable peptide were chemically incorporated. Hyaluronic acid (HA) was also incorporated to mimic the concentration in the brain extracellular matrix. Using U87 cells as a model GBM cell line, we demonstrate that such biomimetic hydrogels support U87 cell growth, spreading, and migration in 3D over the course of 3 weeks in culture. Gene expression analyses showed U87 cells actively deposited extracellular matrix and continued to upregulate matrix remodeling genes. To examine the effects of matrix stiffness on GBM cell fate in 3D, we encapsulated U87 cells in soft (1 kPa) or stiff (26 kPa) hydrogels, which respectively mimics the matrix stiffness of normal brain or GBM tumor tissues. Our results suggest that changes in matrix stiffness induce differential GBM cell proliferation, morphology, and migration modes in 3D. Increasing matrix stiffness led to delayed U87 cell proliferation inside hydrogels, but cells formed denser spheroids with extended cell protrusions. Cells cultured in stiff hydrogels also showed upregulation of HA synthase 1 and matrix metalloproteinase-1 (MMP-1), while simultaneously downregulating HA synthase 2 and MMP-9. This suggests that varying matrix stiffness can induce differential ECM deposition and remodeling by employing different HA synthases or MMPs. Furthermore, increasing matrix stiffness led to simultaneous upregulation of Hras, RhoA, and ROCK1, suggesting a potential link between the mechanosensing pathways and the observed differential cell responses to changes in matrix stiffness. The bioengineered 3D hydrogel platform reported here may provide a useful 3D in vitro brain tumor model for elucidating the mechanisms underlying GBM progression, as well as for evaluating the efficacy of potential drug candidates for treating GBM.

摘要

胶质母细胞瘤(GBM)是最常见且侵袭性最强的原发性脑肿瘤形式,中位生存期为12至15个月,而GBM肿瘤进展的潜在机制在很大程度上仍不清楚。鉴于肿瘤微环境信号在推动GBM进展中的重要性,迫切需要开发体外模型,以便以生理相关且可控的方式促进对脑肿瘤细胞与微环境相互作用的分析。在此,我们报告了一种生物工程3D脑肿瘤模型的开发,该模型使用具有脑模拟生化和力学特性的聚(乙二醇)(PEG)基水凝胶,以帮助阐明基质硬度对GBM细胞命运的影响。我们选择PEG是因为其生物惰性和可调节的物理性质,所得水凝胶允许调节基质硬度而不改变生化成分。为了促进细胞增殖和迁移,化学掺入了CRGDS和一种可被基质金属蛋白酶切割的肽。还掺入了透明质酸(HA)以模拟脑细胞外基质中的浓度。使用U87细胞作为GBM细胞系模型,我们证明这种仿生水凝胶在培养3周的过程中支持U87细胞在3D环境中的生长、铺展和迁移。基因表达分析表明,U87细胞积极沉积细胞外基质并持续上调基质重塑基因。为了研究基质硬度对3D环境中GBM细胞命运的影响,我们将U87细胞封装在软(1 kPa)或硬(26 kPa)水凝胶中,这分别模拟了正常脑或GBM肿瘤组织的基质硬度。我们的结果表明,基质硬度的变化在3D环境中诱导GBM细胞增殖、形态和迁移模式的差异。增加基质硬度导致U87细胞在水凝胶内的增殖延迟,但细胞形成了更致密的球体并伴有延长的细胞突起。在硬水凝胶中培养的细胞还显示透明质酸合酶1和基质金属蛋白酶-1(MMP-1)上调,同时下调透明质酸合酶2和MMP-9。这表明不同的基质硬度可通过采用不同的透明质酸合酶或基质金属蛋白酶诱导细胞外基质沉积和重塑的差异。此外,增加基质硬度导致Hras、RhoA和ROCK1同时上调,这表明机械传感途径与观察到的细胞对基质硬度变化的差异反应之间存在潜在联系。本文报道的生物工程3D水凝胶平台可能为阐明GBM进展的潜在机制以及评估治疗GBM的潜在候选药物的疗效提供一个有用的3D体外脑肿瘤模型。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验