Hussain Shahadat, Raza Zahid, Giacomini Giorgio, Goswami Nandu
School of Computer and Systems Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
General Hospital, 8720 Knittelfeld, Austria.
Biology (Basel). 2021 Oct 12;10(10):1029. doi: 10.3390/biology10101029.
Syncope is the medical condition of loss of consciousness triggered by the momentary cessation of blood flow to the brain. Machine learning techniques have been established to be very effective way to address such problems, where a class label is predicted for given input data. This work presents a Support Vector Machine (SVM) based classification of neuro-mediated syncope evaluated using train-test-split and K-fold cross-validation methods using the patient's physiological data collected through the Head-up Tilt Test in pure clinical settings. The performance of the model has been analyzed over standard statistical performance indices. The experimental results prove the effectiveness of using SVM-based classification for the proactive diagnosis of syncope.
晕厥是一种因大脑血液供应瞬间停止而引发的意识丧失的医学状况。机器学习技术已被证明是解决此类问题的非常有效的方法,其中针对给定的输入数据预测类别标签。这项工作提出了一种基于支持向量机(SVM)的神经介导性晕厥分类方法,该方法使用在纯临床环境中通过头高位倾斜试验收集的患者生理数据,采用训练-测试分割和K折交叉验证方法进行评估。已根据标准统计性能指标对模型的性能进行了分析。实验结果证明了使用基于SVM的分类方法对晕厥进行前瞻性诊断的有效性。