Suppr超能文献

通过数据分析对直立不耐受进行分类。

Classification of orthostatic intolerance through data analytics.

机构信息

North Carolina State University, Raleigh, NC, 27695, USA.

Sandia National Laboratories, Albuquerque, NM, 87123, USA.

出版信息

Med Biol Eng Comput. 2021 Mar;59(3):621-632. doi: 10.1007/s11517-021-02314-0. Epub 2021 Feb 13.

Abstract

Imbalance in the autonomic nervous system can lead to orthostatic intolerance manifested by dizziness, lightheadedness, and a sudden loss of consciousness (syncope); these are common conditions, but they are challenging to diagnose correctly. Uncertainties about the triggering mechanisms and the underlying pathophysiology have led to variations in their classification. This study uses machine learning to categorize patients with orthostatic intolerance. We use random forest classification trees to identify a small number of markers in blood pressure, and heart rate time-series data measured during head-up tilt to (a) distinguish patients with a single pathology and (b) examine data from patients with a mixed pathophysiology. Next, we use Kmeans to cluster the markers representing the time-series data. We apply the proposed method analyzing clinical data from 186 subjects identified as control or suffering from one of four conditions: postural orthostatic tachycardia (POTS), cardioinhibition, vasodepression, and mixed cardioinhibition and vasodepression. Classification results confirm the use of supervised machine learning. We were able to categorize more than 95% of patients with a single condition and were able to subgroup all patients with mixed cardioinhibitory and vasodepressor syncope. Clustering results confirm the disease groups and identify two distinct subgroups within the control and mixed groups. The proposed study demonstrates how to use machine learning to discover structure in blood pressure and heart rate time-series data. The methodology is used in classification of patients with orthostatic intolerance. Diagnosing orthostatic intolerance is challenging, and full characterization of the pathophysiological mechanisms remains a topic of ongoing research. This study provides a step toward leveraging machine learning to assist clinicians and researchers in addressing these challenges. Graphical abstract Machine learning tools utilized to analyze heart rate (HR) and blood pressure (BP) time-series data from syncope and control patients. Results show that machine learning can provide accurate classification of disease groups for 98% of patients and we identified two subgroups within the control patients differentiated by their BP response.

摘要

自主神经系统失衡可导致体位不耐受,表现为头晕、头晕目眩和突然意识丧失(晕厥);这些都是常见的情况,但正确诊断具有挑战性。触发机制和潜在病理生理学的不确定性导致了它们的分类变化。本研究使用机器学习对体位不耐受患者进行分类。我们使用随机森林分类树来识别血压和心率时间序列数据中的少量标记,这些数据是在头高位倾斜期间测量的,以 (a) 区分具有单一病理的患者和 (b) 检查具有混合病理生理学的患者的数据。接下来,我们使用 Kmeans 对代表时间序列数据的标记进行聚类。我们应用所提出的方法分析了 186 名被确定为对照或患有以下四种疾病之一的患者的临床数据:体位性心动过速综合征 (POTS)、心脏抑制、血管舒张和混合心脏抑制和血管舒张。分类结果证实了使用监督机器学习。我们能够对 95%以上的单一病症患者进行分类,并能够对所有患有混合心脏抑制和血管舒张性晕厥的患者进行亚组分类。聚类结果证实了疾病组,并在对照组和混合组中识别出两个不同的亚组。该研究展示了如何使用机器学习来发现血压和心率时间序列数据中的结构。该方法用于体位不耐受患者的分类。诊断体位不耐受具有挑战性,对病理生理机制的全面描述仍然是一个正在进行的研究课题。本研究为利用机器学习来协助临床医生和研究人员应对这些挑战提供了一个步骤。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验