Suppr超能文献

基于参考系校准的机器学习辅助测量设备无关量子密钥分发

Machine Learning-Assisted Measurement Device-Independent Quantum Key Distribution on Reference Frame Calibration.

作者信息

Zhang Sihao, Liu Jingyang, Zeng Guigen, Zhang Chunhui, Zhou Xingyu, Wang Qin

机构信息

Institute of Quantum Information and Technology, Nanjing University of Posts and Telecommunications, Nanjing 210003, China.

Broadband Wireless Communication and Sensor Network Technology, Key Lab of Ministry of Education, Nanjing 210003, China.

出版信息

Entropy (Basel). 2021 Sep 24;23(10):1242. doi: 10.3390/e23101242.

Abstract

In most of the realistic measurement device-independent quantum key distribution (MDI-QKD) systems, efficient, real-time feedback controls are required to maintain system stability when facing disturbance from either external environment or imperfect internal components. Traditionally, people either use a "scanning-and-transmitting" program or insert an extra device to make a phase reference frame calibration for a stable high-visibility interference, resulting in higher system complexity and lower transmission efficiency. In this work, we build a machine learning-assisted MDI-QKD system, where a machine learning model-the long short-term memory (LSTM) network-is for the first time to apply onto the MDI-QKD system for reference frame calibrations. In this machine learning-assisted MDI-QKD system, one can predict out the phase drift between the two users in advance, and actively perform real-time phase compensations, dramatically increasing the key transmission efficiency. Furthermore, we carry out corresponding experimental demonstration over 100 km and 250 km commercial standard single-mode fibers, verifying the effectiveness of the approach.

摘要

在大多数实际的测量设备无关量子密钥分发(MDI-QKD)系统中,当面临来自外部环境或内部组件不完善的干扰时,需要高效、实时的反馈控制来维持系统稳定性。传统上,人们要么使用“扫描并传输”程序,要么插入额外设备进行相位参考系校准以实现稳定的高可见度干涉,这导致系统复杂度更高且传输效率更低。在这项工作中,我们构建了一个机器学习辅助的MDI-QKD系统,其中一个机器学习模型——长短期记忆(LSTM)网络——首次应用于MDI-QKD系统进行参考系校准。在这个机器学习辅助的MDI-QKD系统中,可以提前预测两个用户之间的相位漂移,并主动进行实时相位补偿,从而显著提高密钥传输效率。此外,我们在100公里和250公里的商用标准单模光纤上进行了相应的实验演示,验证了该方法的有效性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1a17/8534342/14675d1daa5e/entropy-23-01242-g0A1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验