Dos Reis Ricardo D, Caron Luana, Singh Sanjay, Felser Claudia, Nicklas Michael
Max Planck Institute for Chemical Physics of Solids, Nöthnitzer Str. 40, 01187 Dresden, Germany.
Brazilian Synchrotron Light Laboratory (LNLS), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas 13083-970, Brazil.
Entropy (Basel). 2021 Sep 29;23(10):1273. doi: 10.3390/e23101273.
Magnetic shape-memory materials are potential magnetic refrigerants, due the caloric properties of their magnetic-field-induced martensitic transformation. The first-order nature of the martensitic transition may be the origin of hysteresis effects that can hinder practical applications. Moreover, the presence of latent heat in these transitions requires direct methods to measure the entropy and to correctly analyze the magnetocaloric effect. Here, we investigated the magnetocaloric effect in the Heusler material Ni1.7Pt0.3MnGa by combining an indirect approach to determine the entropy change from isofield magnetization curves and direct heat-flow measurements using a Peltier calorimeter. Our results demonstrate that the magnetic entropy change ΔS in the vicinity of the first-order martensitic phase transition depends on the measuring method and is directly connected with the temperature and field history of the experimental processes.
由于磁场诱导马氏体相变的热学性质,磁性形状记忆材料是潜在的磁制冷工质。马氏体转变的一级特性可能是阻碍实际应用的滞后效应的根源。此外,这些转变中潜热的存在需要直接方法来测量熵并正确分析磁热效应。在此,我们通过结合一种间接方法(从等场磁化曲线确定熵变)和使用珀耳帖热量计的直接热流测量,研究了赫斯勒合金材料Ni1.7Pt0.3MnGa中的磁热效应。我们的结果表明,在一级马氏体相变附近的磁熵变ΔS取决于测量方法,并且与实验过程的温度和磁场历史直接相关。