Bach Institute of Biochemistry, Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences, 119071 Moscow, Russia.
Chemistry Department, M.V. Lomonosov Moscow State University, Leninskie Gory 1/3, 119991 Moscow, Russia.
Molecules. 2021 Oct 17;26(20):6280. doi: 10.3390/molecules26206280.
We report the results of a computational study of the hydrolysis reaction mechanism of -acetyl-l-aspartyl-l-glutamate (NAAG) catalyzed by glutamate carboxypeptidase II. Analysis of both mechanistic and electronic structure aspects of this multistep reaction is in the focus of this work. In these simulations, model systems are constructed using the relevant crystal structure of the mutated inactive enzyme. After selection of reaction coordinates, the Gibbs energy profiles of elementary steps of the reaction are computed using molecular dynamics simulations with ab initio type QM/MM potentials (QM/MM MD). Energies and forces in the large QM subsystem are estimated in the DFT(PBE0-D3/6-31G**) approximation. The established mechanism includes four elementary steps with the activation energy barriers not exceeding 7 kcal/mol. The models explain the role of point mutations in the enzyme observed in the experimental kinetic studies; namely, the Tyr552Ile substitution disturbs the "oxyanion hole", and the Glu424Gln replacement increases the distance of the nucleophilic attack. Both issues diminish the substrate activation in the enzyme active site. To quantify the substrate activation, we apply the QTAIM-based approaches and the NBO analysis of dynamic features of the corresponding enzyme-substrate complexes. Analysis of the 2D Laplacian of electron density maps allows one to define structures with the electron density deconcentration on the substrate carbon atom, i.e., at the electrophilic site of reactants. The similar electronic structure element in the NBO approach is a lone vacancy on the carbonyl carbon atom in the reactive species. The electronic structure patterns revealed in the NBO and QTAIM-based analyses consistently clarify the reactivity issues in this system.
我们报告了由谷氨酸羧肽酶 II 催化的β-乙酰基-L-天冬氨酰-L-谷氨酸 (NAAG) 水解反应机制的计算研究结果。这项工作的重点是对这个多步反应的机制和电子结构方面进行分析。在这些模拟中,使用相关突变失活酶的晶体结构构建模型系统。选择反应坐标后,使用带有从头算类型 QM/MM 势能 (QM/MM MD) 的分子动力学模拟计算反应的基本步骤的吉布斯能量曲线。大 QM 子系统中的能量和力使用 DFT(PBE0-D3/6-31G**) 近似值进行估计。所建立的机制包括四个基本步骤,其活化能垒不超过 7 kcal/mol。这些模型解释了实验动力学研究中观察到的酶中定点突变的作用;即 Tyr552Ile 取代扰乱了“氧阴离子空穴”,而 Glu424Gln 取代增加了亲核攻击的距离。这两个问题都降低了酶活性位点中底物的激活。为了量化底物的激活,我们应用基于 QTAIM 的方法和 NBO 分析相应酶-底物复合物的动态特征。分析电子密度的二维拉普拉斯图允许定义在底物碳原子上电子密度离析的结构,即反应物的亲电部位。在 NBO 方法中,电子结构元素是反应物种中羰基碳原子上的孤对空位。在 NBO 和 QTAIM 分析中揭示的电子结构模式一致地阐明了该体系中的反应性问题。