Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russian Federation.
Bach Institute of Biochemistry, Federal Research Centre "Fundamentals of Biotechnology", Russian Academy of Sciences, Moscow 119071 Russian Federation.
J Chem Inf Model. 2021 Mar 22;61(3):1215-1225. doi: 10.1021/acs.jcim.0c01308. Epub 2021 Mar 7.
We report the first computational characterization of an optogenetic system composed of two photosensing BLUF (blue light sensor using flavin adenine dinucleotide) domains and two catalytic adenylyl cyclase (AC) domains. Conversion of adenosine triphosphate (ATP) to the reaction products, cyclic adenosine monophosphate (cAMP) and pyrophosphate (PPi), catalyzed by ACs initiated by excitation in photosensing domains has emerged in the focus of modern optogenetic applications because of the request in photoregulated enzymes that modulate cellular concentrations of signaling messengers. The photoactivated AC from the soil bacterium sp. (bPAC) is an important model showing a considerable increase in the ATP to cAMP conversion rate in the catalytic domain after the illumination of the BLUF domain. The 1 μs classical molecular dynamics simulations reveal that the activation of the BLUF domain leading to tautomerization of Gln49 in the chromophore-binding pocket results in switching of the position of the side chain of Arg278 in the active site of AC. Allosteric signal transmission pathways between Gln49 from BLUF and Arg278 from AC were revealed by the dynamical network analysis. The Gibbs energy profiles of the ATP → cAMP + PPi reaction computed using QM(DFT(ωB97X-D3/6-31G**))/MM(CHARMM) molecular dynamics simulations for both Arg278 conformations in AC clarify the reaction mechanism. In the light-activated system, the corresponding arginine conformation stabilizes the pentacoordinated phosphorus of the α-phosphate group in the transition state, thus lowering the activation energy. Simulations of the bPAC system with the Tyr7Phe replacement in the BLUF demonstrate occurrence of both arginine conformations in an equal ratio, explaining the experimentally observed intermediate catalytic activity of the bPAC-Y7F variant as compared with the dark and light states of the wild-type bPAC.
我们报告了第一个由两个光敏 BLUF(使用黄素腺嘌呤二核苷酸的蓝光传感器)结构域和两个催化腺苷酸环化酶(AC)结构域组成的光遗传学系统的计算特性。由于需要调节细胞内信号信使浓度的光调控酶,AC 催化的三磷酸腺苷 (ATP) 转化为反应产物环一磷酸腺苷 (cAMP) 和焦磷酸 (PPi) 的反应,在光敏结构域被激发后被光激活。来自土壤细菌 sp. 的光激活 AC(bPAC)是一个重要的模型,在 BLUF 结构域被照射后,催化结构域中的 ATP 向 cAMP 的转化率显著增加。1 μs 的经典分子动力学模拟表明,BLUF 结构域的激活导致发色团结合口袋中 Gln49 的互变异构,导致 AC 活性位点中 Arg278 侧链位置的切换。通过动态网络分析揭示了 BLUF 中的 Gln49 和 AC 中的 Arg278 之间的变构信号传递途径。使用 QM(DFT(ωB97X-D3/6-31G**))/MM(CHARMM)分子动力学模拟计算的 ATP→cAMP+PPi 反应的 Gibbs 能量曲线,用于两种 AC 构象,阐明了反应机制。在光激活系统中,相应的精氨酸构象稳定了过渡态中α-磷酸基团的五配位磷,从而降低了活化能。BLUF 中的 Tyr7Phe 取代的 bPAC 系统的模拟表明,两种精氨酸构象以相等的比例出现,这解释了实验观察到的 bPAC-Y7F 变体的中间催化活性,与野生型 bPAC 的黑暗和光照状态相比。