Hu Rui-Zi, Ma Rong-Long, Ni Ming, Zhang Xin, Zhou Yuan, Wang Ke, Luo Gang, Cao Gang, Kong Zhen-Zhen, Wang Gui-Lei, Li Hai-Ou, Guo Guo-Ping
CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, China.
CAS Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China.
Nanomaterials (Basel). 2021 Sep 24;11(10):2486. doi: 10.3390/nano11102486.
In the last 20 years, silicon quantum dots have received considerable attention from academic and industrial communities for research on readout, manipulation, storage, near-neighbor and long-range coupling of spin qubits. In this paper, we introduce how to realize a single spin qubit from Si-MOS quantum dots. First, we introduce the structure of a typical Si-MOS quantum dot and the experimental setup. Then, we show the basic properties of the quantum dot, including charge stability diagram, orbital state, valley state, lever arm, electron temperature, tunneling rate and spin lifetime. After that, we introduce the two most commonly used methods for spin-to-charge conversion, i.e., Elzerman readout and Pauli spin blockade readout. Finally, we discuss the details of how to find the resonance frequency of spin qubits and show the result of coherent manipulation, i.e., Rabi oscillation. The above processes constitute an operation guide for helping the followers enter the field of spin qubits in Si-MOS quantum dots.
在过去20年里,硅量子点在自旋量子比特的读出、操控、存储、近邻和长程耦合研究方面受到了学术界和工业界的广泛关注。在本文中,我们介绍了如何从硅金属氧化物半导体(Si-MOS)量子点实现单个自旋量子比特。首先,我们介绍了典型Si-MOS量子点的结构和实验装置。然后,我们展示了量子点的基本特性,包括电荷稳定性图、轨道态、能谷态、杠杆臂、电子温度、隧穿速率和自旋寿命。之后,我们介绍了两种最常用的自旋-电荷转换方法,即埃尔泽曼读出和泡利自旋阻塞读出。最后,我们讨论了如何找到自旋量子比特的共振频率的细节,并展示了相干操控的结果,即拉比振荡。上述过程构成了一个操作指南,以帮助读者进入Si-MOS量子点中的自旋量子比特领域。