Suppr超能文献

在互补金属氧化物半导体(CMOS)平台中将n型金属氧化物半导体(n-MOS)电荷传感与p型金属氧化物半导体(p-MOS)硅空穴双量子点相结合。

Combining n-MOS Charge Sensing with p-MOS Silicon Hole Double Quantum Dots in a CMOS platform.

作者信息

Jin Ik Kyeong, Kumar Krittika, Rendell Matthew J, Huang Jonathan Yue, Escott Chris C, Hudson Fay E, Lim Wee Han, Dzurak Andrew S, Hamilton Alexander R, Liles Scott D

机构信息

School of Physics, The University of New South Wales, Sydney, New South Wales 2052, Australia.

School of Electrical Engineering and Telecommunications, The University of New South Wales, Sydney, New South Wales 2052, Australia.

出版信息

Nano Lett. 2023 Feb 22;23(4):1261-1266. doi: 10.1021/acs.nanolett.2c04417. Epub 2023 Feb 7.

Abstract

Holes in silicon quantum dots are receiving attention due to their potential as fast, tunable, and scalable qubits in semiconductor quantum circuits. Despite this, challenges remain in this material system including difficulties using charge sensing to determine the number of holes in a quantum dot, and in controlling the coupling between adjacent quantum dots. We address these problems by fabricating an ambipolar complementary metal-oxide-semiconductor (CMOS) device using multilayer palladium gates. The device consists of an electron charge sensor adjacent to a hole double quantum dot. We demonstrate control of the spin state via electric dipole spin resonance. We achieve smooth control of the interdot coupling rate over 1 order of magnitude and use the charge sensor to perform spin-to-charge conversion to measure the hole singlet-triplet relaxation time of 11 μs for a known hole occupation. These results provide a path toward improving the quality and controllability of hole spin-qubits.

摘要

硅量子点中的空穴因其在半导体量子电路中作为快速、可调谐且可扩展量子比特的潜力而受到关注。尽管如此,该材料系统仍存在挑战,包括利用电荷传感确定量子点中空穴数量的困难,以及控制相邻量子点之间的耦合。我们通过使用多层钯栅制造一个双极互补金属氧化物半导体(CMOS)器件来解决这些问题。该器件由一个与空穴双量子点相邻的电子电荷传感器组成。我们通过电偶极子自旋共振演示了对自旋态的控制。我们实现了在超过1个数量级的范围内对量子点间耦合速率的平滑控制,并使用电荷传感器进行自旋到电荷的转换,以测量已知空穴占据情况下11微秒的空穴单重态 - 三重态弛豫时间。这些结果为提高空穴自旋量子比特的质量和可控性提供了一条途径。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验