Zhao R, Tanttu T, Tan K Y, Hensen B, Chan K W, Hwang J C C, Leon R C C, Yang C H, Gilbert W, Hudson F E, Itoh K M, Kiselev A A, Ladd T D, Morello A, Laucht A, Dzurak A S
Centre for Quantum Computation and Communication Technology, School of Electrical Engineering and Telecommunications, University of New South Wales, Sydney, NSW, 2052, Australia.
National Institute of Standards and Technology, 325 Broadway, Boulder, CO, 80305, USA.
Nat Commun. 2019 Dec 3;10(1):5500. doi: 10.1038/s41467-019-13416-7.
Single-electron spin qubits employ magnetic fields on the order of 1 Tesla or above to enable quantum state readout via spin-dependent-tunnelling. This requires demanding microwave engineering for coherent spin resonance control, which limits the prospects for large scale multi-qubit systems. Alternatively, singlet-triplet readout enables high-fidelity spin-state measurements in much lower magnetic fields, without the need for reservoirs. Here, we demonstrate low-field operation of metal-oxide-silicon quantum dot qubits by combining coherent single-spin control with high-fidelity, single-shot, Pauli-spin-blockade-based ST readout. We discover that the qubits decohere faster at low magnetic fields with [Formula: see text] μs and [Formula: see text] μs at 150 mT. Their coherence is limited by spin flips of residual Si nuclei in the isotopically enriched Si host material, which occur more frequently at lower fields. Our finding indicates that new trade-offs will be required to ensure the frequency stabilization of spin qubits, and highlights the importance of isotopic enrichment of device substrates for the realization of a scalable silicon-based quantum processor.
单电子自旋量子比特利用约1特斯拉或更高的磁场,通过自旋相关隧穿实现量子态读出。这需要复杂的微波工程来进行相干自旋共振控制,这限制了大规模多量子比特系统的前景。相比之下,单重态-三重态读出能够在低得多的磁场中进行高保真自旋态测量,而无需库。在此,我们通过将相干单自旋控制与基于泡利自旋阻塞的高保真单次读出相结合,展示了金属氧化物硅量子点量子比特的低场操作。我们发现,量子比特在低磁场下退相干更快,在150 mT时分别为[公式:见正文] μs和[公式:见正文] μs。它们的相干性受到同位素富集硅主体材料中残余硅核自旋翻转的限制,这种翻转在较低磁场下更频繁发生。我们的发现表明,需要进行新的权衡以确保自旋量子比特的频率稳定性,并突出了器件衬底同位素富集对于实现可扩展硅基量子处理器的重要性。