Tukova Anastasiia, Kuschnerus Inga Christine, Garcia-Bennett Alfonso, Wang Yuling, Rodger Alison
Department of Molecular Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, NSW 2019, Australia.
Electron Microscopy Unit, University of New South Wales, Sydney, NSW 2052, Australia.
Nanomaterials (Basel). 2021 Sep 29;11(10):2565. doi: 10.3390/nano11102565.
Gold nanoparticles have the potential to be used in biomedical applications from diagnostics to drug delivery. However, interactions of gold nanoparticles with different biomolecules in the cellular environment result in the formation of a "protein corona"-a layer of protein formed around a nanoparticle, which induces changes in the properties of nanoparticles. In this work we developed methods to reproducibly synthesize spheroidal and star-shaped gold nanoparticles, and carried out a physico-chemical characterization of synthesized anionic gold nanospheroids and gold nanostars through transmission electron microscopy (TEM), dynamic light scattering (DLS), zeta potential (ZP), nanoparticles tracking analysis (NTA), ultraviolet-visible (UV-Vis) spectroscopy and estimates of surface-enhanced Raman spectroscopy (SERS) signal enhancement ability. We analyzed how they interact with proteins after pre-incubation with bovine serum albumin (BSA) via UV-Vis, DLS, ZP, NTA, SERS, cryogenic TEM (cryo-TEM) and circular dichroism (CD) spectroscopy. The tests demonstrated that the protein adsorption on the particles' surfaces was different for spheroidal and star shaped particles. In our experiments, star shaped particles limited the protein corona formation at SERS "hot spots". This benefits the small-molecule sensing of nanostars in biological media. This work adds more understanding about protein corona formation on gold nanoparticles of different shapes in biological media, and therefore guides design of particles for studies in vitro and in vivo.
金纳米颗粒有潜力用于从诊断到药物递送的生物医学应用。然而,金纳米颗粒在细胞环境中与不同生物分子的相互作用会导致形成“蛋白质冠层”——在纳米颗粒周围形成的一层蛋白质,这会引起纳米颗粒性质的变化。在这项工作中,我们开发了可重复合成球形和星形金纳米颗粒的方法,并通过透射电子显微镜(TEM)、动态光散射(DLS)、zeta电位(ZP)、纳米颗粒跟踪分析(NTA)、紫外可见(UV-Vis)光谱以及表面增强拉曼光谱(SERS)信号增强能力的估计,对合成的阴离子金纳米球和金纳米星进行了物理化学表征。我们通过UV-Vis、DLS、ZP、NTA、SERS、低温TEM(cryo-TEM)和圆二色性(CD)光谱分析了它们在与牛血清白蛋白(BSA)预孵育后如何与蛋白质相互作用。测试表明,球形和星形颗粒在颗粒表面的蛋白质吸附情况不同。在我们的实验中,星形颗粒限制了SERS“热点”处蛋白质冠层的形成。这有利于生物介质中纳米星的小分子传感。这项工作增进了对生物介质中不同形状金纳米颗粒上蛋白质冠层形成的理解,因此为体外和体内研究的颗粒设计提供了指导。