Suppr超能文献

金纳米颗粒团聚物中蛋白质的表面增强拉曼光谱探测

SERS Probing of Proteins in Gold Nanoparticle Agglomerates.

作者信息

Szekeres Gergo Peter, Kneipp Janina

机构信息

Department of Chemistry, Humboldt-Universität zu Berlin, Berlin, Germany.

School of Analytical Sciences Adlershof, Berlin, Germany.

出版信息

Front Chem. 2019 Jan 31;7:30. doi: 10.3389/fchem.2019.00030. eCollection 2019.

Abstract

The collection of surface-enhanced Raman scattering (SERS) spectra of proteins and other biomolecules in complex biological samples such as animal cells has been achieved with gold nanoparticles that are introduced to the sample. As a model for such a situation, SERS spectra were measured in protein solutions using gold nanoparticles in the absence of aggregating agents, allowing for the free formation of a protein corona. The SERS spectra indicate a varied interaction of the protein molecule with the gold nanoparticles, depending on protein concentration. The concentration-dependent optical properties of the formed agglomerates result in strong variation in SERS enhancement. At protein concentrations that correspond to those inside cells, SERS signals are found to be very low. The results suggest that in living cells the successful collection of SERS spectra must be due to the positioning of the aggregates rather than the crowded biomolecular environment inside the cells. Experiments with DNA suggest the suitability of the applied sample preparation approach for an improved understanding of SERS nanoprobes and nanoparticle-biomolecule interactions in general.

摘要

通过将金纳米颗粒引入动物细胞等复杂生物样品中,已实现对蛋白质和其他生物分子的表面增强拉曼散射(SERS)光谱的采集。作为这种情况的一个模型,在没有聚集剂的情况下,使用金纳米颗粒在蛋白质溶液中测量SERS光谱,从而使蛋白质冠层自由形成。SERS光谱表明,蛋白质分子与金纳米颗粒的相互作用各不相同,这取决于蛋白质浓度。所形成的团聚体的浓度依赖性光学性质导致SERS增强有很大变化。在与细胞内浓度相当的蛋白质浓度下,发现SERS信号非常低。结果表明,在活细胞中,成功采集SERS光谱必定是由于聚集体的定位,而不是细胞内拥挤的生物分子环境。DNA实验表明,所应用的样品制备方法一般适用于更好地理解SERS纳米探针和纳米颗粒 - 生物分子相互作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/25fe/6365451/2efd4a5acd72/fchem-07-00030-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验