Suppr超能文献

一种语言匹配模型,用于提高 COVID-19 接触者追踪的公平性和效率。

A language-matching model to improve equity and efficiency of COVID-19 contact tracing.

机构信息

Regulation, Evaluation, and Governance Laboratory, Stanford University, Stanford, CA 94305.

County of Santa Clara Public Health Department, San Jose, CA 95126.

出版信息

Proc Natl Acad Sci U S A. 2021 Oct 26;118(43). doi: 10.1073/pnas.2109443118.

Abstract

Contact tracing is a pillar of COVID-19 response, but language access and equity have posed major obstacles. COVID-19 has disproportionately affected minority communities with many non-English-speaking members. Language discordance can increase processing times and hamper the trust building necessary for effective contact tracing. We demonstrate how matching predicted patient language with contact tracer language can enhance contact tracing. First, we show how to use machine learning to combine information from sparse laboratory reports with richer census data to predict the language of an incoming case. Second, we embed this method in the highly demanding environment of actual contact tracing with high volumes of cases in Santa Clara County, CA. Third, we evaluate this language-matching intervention in a randomized controlled trial. We show that this low-touch intervention results in 1) significant time savings, shortening the time from opening of cases to completion of the initial interview by nearly 14 h and increasing same-day completion by 12%, and 2) improved engagement, reducing the refusal to interview by 4%. These findings have important implications for reducing social disparities in COVID-19; improving equity in healthcare access; and, more broadly, leveling language differences in public services.

摘要

接触者追踪是 COVID-19 应对措施的一个重要组成部分,但语言获取和公平性却构成了重大障碍。COVID-19 对少数族裔社区造成了不成比例的影响,其中许多人是不会说英语的。语言差异会增加处理时间,并阻碍建立有效的接触者追踪所需的信任。我们展示了如何通过匹配预测的患者语言与接触者追踪者的语言来增强接触者追踪。首先,我们展示了如何使用机器学习将来自稀疏的实验室报告中的信息与更丰富的人口普查数据相结合,以预测传入病例的语言。其次,我们将这种方法嵌入到加利福尼亚州圣克拉拉县实际接触者追踪的高要求环境中,该地区有大量病例。第三,我们在随机对照试验中评估了这种语言匹配干预措施。我们表明,这种低接触干预措施导致:1)显著节省时间,将从病例开放到初始访谈完成的时间缩短了近 14 小时,并将当天完成的时间增加了 12%;2)提高了参与度,拒绝接受访谈的比例降低了 4%。这些发现对减少 COVID-19 中的社会差异、改善医疗保健获取方面的公平性以及更广泛地消除公共服务中的语言差异具有重要意义。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ef9d/8639369/445419e30750/pnas.202109443fig01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验