Sakuraba Haruka, Kurokawa Hiroyuki, Genda Hidenori, Ohta Kenji
Department of Earth and Planetary Sciences, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo, 152-8551, Japan.
Earth-Life Science Institute, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo, 152-8550, Japan.
Sci Rep. 2021 Oct 22;11(1):20894. doi: 10.1038/s41598-021-99240-w.
Earth's surface environment is largely influenced by its budget of major volatile elements: carbon (C), nitrogen (N), and hydrogen (H). Although the volatiles on Earth are thought to have been delivered by chondritic materials, the elemental composition of the bulk silicate Earth (BSE) shows depletion in the order of N, C, and H. Previous studies have concluded that non-chondritic materials are needed for this depletion pattern. Here, we model the evolution of the volatile abundances in the atmosphere, oceans, crust, mantle, and core through the accretion history by considering elemental partitioning and impact erosion. We show that the BSE depletion pattern can be reproduced from continuous accretion of chondritic bodies by the partitioning of C into the core and H storage in the magma ocean in the main accretion stage and atmospheric erosion of N in the late accretion stage. This scenario requires a relatively oxidized magma ocean ([Formula: see text] [Formula: see text] [Formula: see text][Formula: see text], where [Formula: see text] is the oxygen fugacity, [Formula: see text] is [Formula: see text], and [Formula: see text] is [Formula: see text] at the iron-wüstite buffer), the dominance of small impactors in the late accretion, and the storage of H and C in oceanic water and carbonate rocks in the late accretion stage, all of which are naturally expected from the formation of an Earth-sized planet in the habitable zone.
地球的表面环境在很大程度上受到其主要挥发性元素碳(C)、氮(N)和氢(H)收支的影响。尽管地球上的挥发性物质被认为是由球粒陨石物质输送而来,但地球整体硅酸盐(BSE)的元素组成显示出按N、C、H的顺序亏损。先前的研究得出结论,这种亏损模式需要非球粒陨石物质。在这里,我们通过考虑元素分配和撞击侵蚀,对大气、海洋、地壳、地幔和地核中挥发性物质丰度在吸积历史中的演化进行了建模。我们表明,通过在主要吸积阶段将C分配到地核以及将H储存在岩浆海洋中,并在后期吸积阶段对N进行大气侵蚀,BSE的亏损模式可以通过球粒陨石体的持续吸积来重现。这种情况需要一个相对氧化的岩浆海洋([公式:见原文] [公式:见原文] [公式:见原文][公式:见原文],其中[公式:见原文]是氧逸度,[公式:见原文]是[公式:见原文],[公式:见原文]是在铁 - 方铁矿缓冲条件下的[公式:见原文]),后期吸积中小撞击体占主导,以及在后期吸积阶段将H和C储存在海洋水和碳酸盐岩中,所有这些从宜居带中地球大小行星的形成来看都是自然预期的。