Pahlevan Kaveh, Schaefer Laura, Hirschmann Marc M
School of Earth and Space Exploration, Arizona State University, Tempe, AZ, 85287, USA.
Department of Earth Sciences, University of Minnesota, Minneapolis, MN, 55455, USA.
Earth Planet Sci Lett. 2019 Nov 15;526. doi: 10.1016/j.epsl.2019.115770. Epub 2019 Sep 4.
The Moon-forming giant impact extensively melts and partially vaporizes the silicate Earth and delivers a substantial mass of metal to Earth's core. The subsequent evolution of the magma ocean and overlying atmosphere has been described by theoretical models but observable constraints on this epoch have proved elusive. Here, we report thermodynamic and climate calculations of the primordial atmosphere during the magma ocean and water ocean epochs respectively and forge new links with observations to gain insight into the behavior of volatiles on the Hadean Earth. As accretion wanes, Earth's magma ocean crystallizes, outgassing the bulk of its volatiles into the primordial atmosphere. The redox state of the magma ocean controls both the chemical composition of the outgassed volatiles and the hydrogen isotopic composition of water oceans that remain after hydrogen escape from the primordial atmosphere. The climate modeling indicates that multi-bar H-rich atmospheres generate sufficient greenhouse warming and rapid kinetics resulting in ocean-atmosphere HO-H isotopic equilibration. Whereas water condenses and is mostly retained, molecular hydrogen does not condense and can escape, allowing large quantities (10 bars) of hydrogen - if present - to be lost from the Earth in this epoch. Because the escaping inventory of H can be comparable to the hydrogen inventory in primordial water oceans, equilibrium deuterium enrichment can be large with a magnitude that depends on the initial atmospheric H inventory. Under equilibrium partitioning, the water molecule concentrates deuterium and, to the extent that hydrogen in other forms (e.g., H) are significant species in the outgassed atmosphere, pronounced D/H enrichments (1.5-2x) in the oceans are expected from equilibrium partitioning in this epoch. By contrast, the common view that terrestrial water has a carbonaceous chondritic source requires the oceans to preserve the isotopic composition of that source, undergoing minimal D-enrichment via equilibration with H followed by hydrodynamic escape. Such minimal enrichment places upper limits on the amount of primordial atmospheric H in contact with Hadean water oceans and implies oxidizing conditions (logfO>IW+1, H/HO<0.3) for outgassing from the magma ocean. Preservation of an approximate carbonaceous chondrite D/H signature in the oceans thus provides evidence that the observed oxidation of silicate Earth occurred before crystallization of the final magma ocean, yielding a new constraint on the timing of this critical event in Earth history. The seawater-carbonaceous chondrite "match" in D/H (to ~10-20%) further constrains the prior existence of an atmospheric H inventory - of any origin - on post-giant-impact Earth to <20 bars, and suggests that the terrestrial mantle supplied the oxidant for the chemical resorption of metals during terrestrial late accretion.
形成月球的巨大撞击使硅酸盐地球广泛熔融并部分汽化,还向地核输送了大量金属。岩浆海洋和其上覆大气层的后续演化已由理论模型进行了描述,但对这一时期的可观测约束却难以捉摸。在此,我们分别报告了岩浆海洋时期和水海洋时期原始大气的热力学和气候计算结果,并与观测建立了新的联系,以深入了解冥古宙地球挥发性物质的行为。随着吸积作用减弱,地球的岩浆海洋结晶,将大部分挥发性物质释放到原始大气中。岩浆海洋的氧化还原状态控制着释放出的挥发性物质的化学成分以及原始大气中氢逃逸后剩余的水海洋的氢同位素组成。气候模型表明,多巴的富氢大气会产生足够的温室变暖效应和快速动力学,导致海洋 - 大气氢氧同位素平衡。水会凝结并大多保留下来,而分子氢不会凝结且能够逃逸,这使得大量(约10巴)的氢(如果存在的话)在这个时期从地球流失。由于逃逸的氢存量可能与原始水海洋中的氢存量相当,平衡氘富集可能很大,其幅度取决于初始大气中的氢存量。在平衡分配情况下,水分子会富集氘,并且在其他形式的氢(例如H)在释放出的大气中是重要成分的程度上,预计这个时期海洋中会因平衡分配而出现显著的D/H富集(约1.5 - 2倍)。相比之下,普遍认为地球水具有碳质球粒陨石来源的观点要求海洋保留该来源的同位素组成,通过与氢平衡然后水动力逃逸实现最小的氘富集。这种最小富集对与冥古宙水海洋接触的原始大气氢量设定了上限,并意味着岩浆海洋释放气体时处于氧化条件(logfO>IW + 1,H/H₂O<0.3)。因此,海洋中近似碳质球粒陨石的D/H特征得以保留,这提供了证据,表明观测到的硅酸盐地球氧化发生在最后岩浆海洋结晶之前,为地球历史上这一关键事件的时间提供了新的约束。海水与碳质球粒陨石在D/H上的“匹配”(约为10% - 20%)进一步限制了撞击后地球上任何来源的大气氢存量的先前存在量至<20巴,并表明地幔为地球晚期吸积期间金属的化学吸收提供了氧化剂。