Laboratory for Calcium and Bone Metabolism, Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands.
Vascular Biology Laboratory, AU-KBC Research Centre, Anna University, Chennai, Tamil Nadu, India.
J Cell Physiol. 2022 Feb;237(2):1440-1454. doi: 10.1002/jcp.30617. Epub 2021 Oct 22.
The bone microenvironment is one of the most hypoxic regions of the human body and in experimental models; hypoxia inhibits osteogenic differentiation of mesenchymal stromal cells (MSCs). Our previous work revealed that Mucin 1 (MUC1) was dynamically expressed during osteogenic differentiation of human MSCs and upregulated by hypoxia. Upon stimulation, its C-terminus (MUC1-CT) is proteolytically cleaved, translocases to the nucleus, and binds to promoters of target genes. Therefore, we assessed the MUC1-mediated effect of hypoxia on the proteomic composition of human osteoblast-derived extracellular matrices (ECMs) and characterized their osteogenic and angiogenic potentials in the produced ECMs. We generated ECMs from osteogenically differentiated human MSC cultured in vitro under 20% or 2% oxygen with or without GO-201, a MUC1-CT inhibitor. Hypoxia upregulated MUC1, vascular endothelial growth factor, and connective tissue growth factor independent of MUC1 inhibition, whereas GO-201 stabilized hypoxia-inducible factor 1-alpha. Hypoxia and/or MUC1-CT inhibition reduced osteogenic differentiation of human MSC by AMP-activated protein kinase/mTORC1/S6K pathway and dampened their matrix mineralization. Hypoxia modulated ECMs by transforming growth factor-beta/Smad and phosphorylation of NFκB and upregulated COL1A1, COL5A1, and COL5A3. The ECMs of hypoxic osteoblasts reduced MSC proliferation and accelerated their osteogenic differentiation, whereas MUC1-CT-inhibited ECMs counteracted these effects. In addition, ECMs generated under MUC1-CT inhibition reduced the angiogenic potential independent of oxygen concentration. We claim here that MUC1 is critical for hypoxia-mediated changes during osteoblastogenesis, which not only alters the proteomic landscape of the ECM but thereby also modulates its osteogenic and angiogenic potentials.
骨微环境是人体缺氧最严重的区域之一,在实验模型中,缺氧会抑制间充质基质细胞(MSCs)的成骨分化。我们之前的工作表明,黏蛋白 1(MUC1)在人 MSCs 的成骨分化过程中动态表达,并受缺氧上调。刺激后,其 C 端(MUC1-CT)被蛋白水解切割,易位到细胞核,并与靶基因的启动子结合。因此,我们评估了 MUC1 介导的缺氧对人成骨细胞衍生细胞外基质(ECM)的蛋白质组组成的影响,并对其在产生的 ECM 中的成骨和血管生成潜力进行了表征。我们在体外培养的成骨分化人 MSC 中,在 20%或 2%氧气下,或在添加 MUC1-CT 抑制剂 GO-201 的情况下,生成 ECM。缺氧独立于 MUC1 抑制而上调 MUC1、血管内皮生长因子和结缔组织生长因子,而 GO-201 稳定缺氧诱导因子 1-α。缺氧和/或 MUC1-CT 抑制通过 AMP 激活蛋白激酶/mTORC1/S6K 通路减少人 MSC 的成骨分化,并减弱其基质矿化。缺氧通过转化生长因子-β/Smad 和 NFκB 的磷酸化来调节 ECM,并上调 COL1A1、COL5A1 和 COL5A3。缺氧成骨细胞的 ECM 减少 MSC 的增殖并加速其成骨分化,而 MUC1-CT 抑制的 ECM 则抵消了这些作用。此外,MUC1-CT 抑制下生成的 ECM 独立于氧浓度降低了血管生成潜力。我们在这里声称,MUC1 对于成骨细胞发生过程中的缺氧介导变化至关重要,这不仅改变了 ECM 的蛋白质组景观,而且还调节了其成骨和血管生成潜力。