文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

一氧化氮通过抑制许可宿主细胞的募集来控制利什曼原虫的增殖。

Nitric oxide controls proliferation of Leishmania major by inhibiting the recruitment of permissive host cells.

机构信息

Institute of Molecular and Clinical Immunology, Health Campus Immunology Infectiology and Inflammation (GC-I(3)), Otto-von-Guericke-University, Magdeburg 39120, Germany.

Institute of Molecular and Clinical Immunology, Health Campus Immunology Infectiology and Inflammation (GC-I(3)), Otto-von-Guericke-University, Magdeburg 39120, Germany.

出版信息

Immunity. 2021 Dec 14;54(12):2724-2739.e10. doi: 10.1016/j.immuni.2021.09.021. Epub 2021 Oct 22.


DOI:10.1016/j.immuni.2021.09.021
PMID:34687607
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8691385/
Abstract

Nitric oxide (NO) is an important antimicrobial effector but also prevents unnecessary tissue damage by shutting down the recruitment of monocyte-derived phagocytes. Intracellular pathogens such as Leishmania major can hijack these cells as a niche for replication. Thus, NO might exert containment by restricting the availability of the cellular niche required for efficient pathogen proliferation. However, such indirect modes of action remain to be established. By combining mathematical modeling with intravital 2-photon biosensors of pathogen viability and proliferation, we show that low L. major proliferation results not from direct NO impact on the pathogen but from reduced availability of proliferation-permissive host cells. Although inhibiting NO production increases recruitment of these cells, and thus pathogen proliferation, blocking cell recruitment uncouples the NO effect from pathogen proliferation. Therefore, NO fulfills two distinct functions for L. major containment: permitting direct killing and restricting the supply of proliferation-permissive host cells.

摘要

一氧化氮(NO)是一种重要的抗菌效应分子,但它也通过关闭单核细胞衍生的吞噬细胞的募集来防止不必要的组织损伤。细胞内病原体,如利什曼原虫,可以劫持这些细胞作为复制的小生境。因此,NO 可能通过限制有效增殖所需的细胞小生境的可用性来发挥控制作用。然而,这种间接作用模式仍有待确定。通过将数学建模与活体双光子生物传感器结合,我们证明了低水平的 L. major 增殖不是由于 NO 直接作用于病原体,而是由于增殖允许的宿主细胞的可用性降低。尽管抑制 NO 的产生会增加这些细胞的募集,从而增加病原体的增殖,但阻断细胞募集会使 NO 效应与病原体增殖脱钩。因此,NO 对 L. major 的控制具有两种截然不同的功能:允许直接杀伤和限制增殖允许的宿主细胞的供应。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8cd2/8691385/b0b32313e3f8/gr7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8cd2/8691385/bc495400cdc3/fx1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8cd2/8691385/1e8a66bb5d4e/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8cd2/8691385/108394bf06e9/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8cd2/8691385/fe5b0b7112e1/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8cd2/8691385/bcd5d558ea86/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8cd2/8691385/4df9ab8703d0/gr5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8cd2/8691385/ab7608ac4dfd/gr6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8cd2/8691385/b0b32313e3f8/gr7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8cd2/8691385/bc495400cdc3/fx1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8cd2/8691385/1e8a66bb5d4e/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8cd2/8691385/108394bf06e9/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8cd2/8691385/fe5b0b7112e1/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8cd2/8691385/bcd5d558ea86/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8cd2/8691385/4df9ab8703d0/gr5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8cd2/8691385/ab7608ac4dfd/gr6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8cd2/8691385/b0b32313e3f8/gr7.jpg

相似文献

[1]
Nitric oxide controls proliferation of Leishmania major by inhibiting the recruitment of permissive host cells.

Immunity. 2021-12-14

[2]
CD11c-expressing Ly6C+CCR2+ monocytes constitute a reservoir for efficient Leishmania proliferation and cell-to-cell transmission.

PLoS Pathog. 2018-10-22

[3]
A Metabolism-Based Quorum Sensing Mechanism Contributes to Termination of Inflammatory Responses.

Immunity. 2018-9-25

[4]
Intracellular parasite kill: flow cytometry and NO detection for rapid discrimination between anti-leishmanial activity and macrophage activation.

J Immunol Methods. 2008-4-20

[5]
Both the Fas ligand and inducible nitric oxide synthase are needed for control of parasite replication within lesions in mice infected with Leishmania major whereas the contribution of tumor necrosis factor is minimal.

Infect Immun. 2003-9

[6]
Skin-derived macrophages from Leishmania major-susceptible mice exhibit interleukin-12- and interferon-gamma-independent nitric oxide production and parasite killing after treatment with immunostimulatory DNA.

J Invest Dermatol. 2002-9

[7]
Photoconvertible pathogen labeling reveals nitric oxide control of Leishmania major infection in vivo via dampening of parasite metabolism.

Cell Host Microbe. 2013-10-16

[8]
The role of monocytes/macrophages in Leishmania infection: A glance at the human response.

Acta Trop. 2020-3-25

[9]
Induction, Propagation, and Activity of Host Nitric Oxide: Lessons from Leishmania Infection.

Trends Parasitol. 2015-10-1

[10]
Leishmania major drives host phagocyte death and cell-to-cell transfer depending on intracellular pathogen proliferation rate.

JCI Insight. 2023-7-24

引用本文的文献

[1]
Guanylate-Binding Proteins Promote Host Defense Against by Balancing iNOS/Arg-1 in Myeloid Cells.

bioRxiv. 2025-6-30

[2]
Finding and filling the knowledge gaps in mechanisms of T cell-mediated TB immunity to inform vaccine design.

Nat Rev Immunol. 2025-6-13

[3]
UDP-glucose regulates dendritic cell mitochondrial respiration via a nitric oxide-dependent mechanism.

J Leukoc Biol. 2025-5-7

[4]
Leishmania major Dihydrolipoyl dehydrogenase (DLD) is a key metabolic enzyme that drives parasite proliferation, pathology and host immune response.

PLoS Pathog. 2025-3-17

[5]
FcRγIIA attenuates pathology of cutaneous leishmaniasis and modulates ITAMa/i balance.

Parasit Vectors. 2024-12-18

[6]
Type 1 diabetes and parasite infection: An exploratory study in NOD mice.

PLoS One. 2024

[7]
Neutrophil-specific expression of JAK2-V617F or CALRmut induces distinct inflammatory profiles in myeloproliferative neoplasia.

J Hematol Oncol. 2024-6-9

[8]
Detection of nitric oxide-mediated metabolic effects using real-time extracellular flux analysis.

PLoS One. 2024

[9]
Antileishmanial Activity, Toxicity and Mechanism of Action of Complexes of Sodium Usnate with Lanthanide Ions: Eu(III), Sm(III), Gd(III), Nd(III), La(III) and Tb(III).

Int J Mol Sci. 2023-12-28

[10]
In silico and in vitro potentials of crocin and amphotericin B on Leishmania major: Multiple synergistic mechanisms of actions.

PLoS One. 2023

本文引用的文献

[1]
Novel standardized method for extracellular flux analysis of oxidative and glycolytic metabolism in peripheral blood mononuclear cells.

Sci Rep. 2021-1-18

[2]
Th1-Th2 Cross-Regulation Controls Early Leishmania Infection in the Skin by Modulating the Size of the Permissive Monocytic Host Cell Reservoir.

Cell Host Microbe. 2020-5-13

[3]
Tracking of quiescence in Leishmania by quantifying the expression of GFP in the ribosomal DNA locus.

Sci Rep. 2019-12-12

[4]
IFN-γ-dependent nitric oxide suppresses Brucella-induced arthritis by inhibition of inflammasome activation.

J Leukoc Biol. 2019-2-12

[5]
CD11c-expressing Ly6C+CCR2+ monocytes constitute a reservoir for efficient Leishmania proliferation and cell-to-cell transmission.

PLoS Pathog. 2018-10-22

[6]
A Metabolism-Based Quorum Sensing Mechanism Contributes to Termination of Inflammatory Responses.

Immunity. 2018-9-25

[7]
A mathematical model of the impact of insulin secretion dynamics on selective hepatic insulin resistance.

Nat Commun. 2017-11-8

[8]
Ly6C inflammatory monocytes promote susceptibility to Leishmania donovani infection.

Sci Rep. 2017-10-31

[9]
Frontline Science: amastigotes can replicate within neutrophils.

J Leukoc Biol. 2017-11

[10]
Infection-adapted emergency hematopoiesis promotes visceral leishmaniasis.

PLoS Pathog. 2017-8-7

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索