School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China.
School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China.
Int J Biol Macromol. 2021 Dec 15;193(Pt A):173-182. doi: 10.1016/j.ijbiomac.2021.10.098. Epub 2021 Oct 20.
In order to explore the distribution, conformation and interaction of collagen on GO nanosheet surfaces, the mechanism of self-assembly of collagen was investigated in the presence of GO nanosheets. Atomic force microscopy (AFM) was employed to observe the conformation of self-assembled collagen fibrils on the GO nanosheets surfaces. The collagen concentration and incubation time mainly affect the size of the collagen fibrils while the pH of the dispersion determines the self-assembly sites of collagen fibrils on the GO nanosheets surfaces. This pH-dependent adsorption is attributed to the interfacial interactions between the tunable ionization of the collagen molecules and the amphiphilic GO nanosheets. Vacuum-assisted self-assembly technology confirmed that GO nanosheets can direct the self-assembly of collagen molecules and form nacre-like nanocomposites. The GO/collagen nanocomposite films combine the remarkable properties of GO nanosheets and collagen to form functional nanocomposites with well-ordered hierarchical structures. Further, strong interfacial interactions between GO nanosheets with collagen fibrils result in enhanced mechanical properties and biocompatibility of nanocomposite films, which is conducive to enhance the neuronal differentiation of SH-SY5Y cells. Overall, this work provides fresh insight into the interactions between GO and collagen, which is essential for the design and manufacture of bioinspired nanocomposites with tailored mechanical properties.
为了探索胶原在 GO 纳米片表面的分布、构象和相互作用,研究了在 GO 纳米片存在下胶原的自组装机制。原子力显微镜(AFM)用于观察 GO 纳米片表面自组装胶原原纤维的构象。胶原浓度和孵育时间主要影响胶原原纤维的大小,而分散液的 pH 值决定了胶原原纤维在 GO 纳米片表面的自组装位置。这种 pH 依赖性吸附归因于胶原分子的可调离子化与两亲性 GO 纳米片之间的界面相互作用。真空辅助自组装技术证实,GO 纳米片可以指导胶原分子的自组装并形成珍珠母样纳米复合材料。GO/胶原纳米复合材料薄膜结合了 GO 纳米片和胶原的显著特性,形成具有有序分级结构的功能性纳米复合材料。此外,GO 纳米片与胶原原纤维之间的强界面相互作用导致纳米复合材料薄膜的机械性能和生物相容性得到增强,这有利于增强 SH-SY5Y 细胞的神经元分化。总的来说,这项工作为 GO 和胶原之间的相互作用提供了新的见解,这对于设计和制造具有定制机械性能的仿生纳米复合材料至关重要。