Suppr超能文献

用于加速无细胞和无生长因子的颅面骨再生的个性化复合支架

Personalized composite scaffolds for accelerated cell- and growth factor-free craniofacial bone regeneration.

作者信息

Kim Mirae, Wang Xinlong, Li Yiming, Lin Zitong, Collins Caralyn P, Liu Yugang, Ahn Yujin, Tsal Hsiu-Ming, Song Joseph W, Duan Chongwen, Zhu Yi, Sun Cheng, He Tong-Chuan, Luo Yuan, Reid Russell R, Ameer Guillermo A

机构信息

Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA.

Center for Advanced Regenerative Engineering, Northwestern University, Evanston, IL, 60208, USA.

出版信息

Bioact Mater. 2024 Aug 1;41:427-439. doi: 10.1016/j.bioactmat.2024.07.029. eCollection 2024 Nov.

Abstract

Approaches to regenerating bone often rely on integrating biomaterials and biological signals in the form of cells or cytokines. However, from a translational point of view, these approaches are challenging due to the sourcing and quality of the biologic, unpredictable immune responses, complex regulatory paths, and high costs. We describe a simple manufacturing process and a material-centric 3D-printed composite scaffold system (CSS) that offers distinct advantages for clinical translation. The CSS comprises a 3D-printed porous polydiolcitrate-hydroxyapatite composite elastomer infused with a polydiolcitrate-graphene oxide hydrogel composite. Using a micro-continuous liquid interface production 3D printer, we fabricate a precise porous ceramic scaffold with 60 wt% hydroxyapatite resembling natural bone. The resulting scaffold integrates with a thermoresponsive hydrogel composite to fit the defect, which is expected to enhance surface contact with surrounding tissue and facilitate biointegration. The antioxidative properties of citrate polymers prevent long-term inflammatory responses. The CSS stimulates osteogenesis and . Within 4 weeks in a calvarial critical-sized bone defect model, the CSS accelerated ECM deposition (8-fold) and mineralized osteoid (69-fold) compared to the untreated. Through spatial transcriptomics, we demonstrated the comprehensive biological processes of CSS for prompt osseointegration. Our material-centric approach delivers impressive osteogenic properties and streamlined manufacturing advantages, potentially expediting clinical application for bone reconstruction surgeries.

摘要

骨再生方法通常依赖于将生物材料与细胞或细胞因子形式的生物信号相结合。然而,从转化医学的角度来看,由于生物材料的来源和质量、不可预测的免疫反应、复杂的监管途径以及高昂的成本,这些方法具有挑战性。我们描述了一种简单的制造工艺和一种以材料为中心的3D打印复合支架系统(CSS),该系统为临床转化提供了独特的优势。CSS由注入聚二醇柠檬酸盐 - 氧化石墨烯水凝胶复合材料的3D打印多孔聚二醇柠檬酸盐 - 羟基磷灰石复合弹性体组成。使用微连续液体界面生产3D打印机,我们制造了一种精确的多孔陶瓷支架,其羟基磷灰石含量为60 wt%,类似于天然骨。所得支架与热响应性水凝胶复合材料结合以适应缺损,这有望增强与周围组织的表面接触并促进生物整合。柠檬酸盐聚合物的抗氧化性能可防止长期炎症反应。CSS刺激成骨作用。在颅骨临界尺寸骨缺损模型中,与未治疗组相比,CSS在4周内加速了细胞外基质沉积(8倍)和矿化类骨质(69倍)。通过空间转录组学,我们展示了CSS促进骨整合的全面生物学过程。我们以材料为中心的方法具有令人印象深刻的成骨特性和简化的制造优势,可能会加快骨重建手术的临床应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9f40/11345904/767c1c3b4f7b/ga1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验