Suppr超能文献

利用神经架构搜索预测扩散磁共振成像信号

Prediction of dMRI signals with neural architecture search.

作者信息

Chen Haoze, Zhang Zhijie, Jin Mingwu, Wang Fengxiang

机构信息

School of Instrument and Electronics, North University of China, Taiyuan 030051, China; School of Instrument and Electronics, North University of China, Key Laboratory of Instrumentation Science & Dynamic Measurement (North University of China), Ministry of Education, Taiyuan 030051 China.

Department of Physics, University of Texas at Arlington, 502 Yates Street, Box 19059, Arlington, TX 76019, United States.

出版信息

J Neurosci Methods. 2022 Jan 1;365:109389. doi: 10.1016/j.jneumeth.2021.109389. Epub 2021 Oct 20.

Abstract

BACKGROUND

There is growing interest in the neuroscience community in estimating and mapping microscopic properties of brain tissue non-invasively using magnetic resonance measurements. Machine learning methods are actively investigated to predict the signals measured in diffusion magnetic resonance imaging (dMRI).

NEW METHOD

We applied the neural architecture search (NAS) to train a recurrent neural network to generate a multilayer perceptron to predict the dMRI data of unknown signals based on the different acquisition parameters and training data. The search space of NAS is the number of neurons in each layer of the multilayer perceptron network. To our best knowledge, this is the first time to apply NAS to solve the dMRI signal prediction problem.

RESULTS

The experimental results demonstrate that the proposed NAS method can achieve fast training and predict dMRI signals accurately. For dMRI signals with four acquisition strategies of double diffusion encoding (DDE), double oscillating diffusion encoding (DODE), multi-shell and DSI-like pulsed gradient spin-echo (PGSE), the mean squared errors of the multilayer perceptron network designed by NAS are 0.0043, 0.0034, 0.0147 and 0.0199, respectively.

COMPARISON WITH EXISTING METHOD(S): We also compared NAS with other machine learning prediction methods, such as support vector regression (SVR), decision tree (DT) and random forest (RF), k-nearest neighbors (KNN), adaboost regressor (AR), gradient boosting regressor (GBR) and extra-trees regressor (ET). NAS achieved the better prediction performance in most cases.

CONCLUSION

In this study, NAS was developed for the prediction of dMRI signals and could become an effective prediction tool.

摘要

背景

神经科学界越来越关注使用磁共振测量来无创估计和绘制脑组织的微观特性。人们正在积极研究机器学习方法,以预测在扩散磁共振成像(dMRI)中测量的信号。

新方法

我们应用神经架构搜索(NAS)来训练递归神经网络,以生成多层感知器,从而基于不同的采集参数和训练数据预测未知信号的dMRI数据。NAS的搜索空间是多层感知器网络每层中的神经元数量。据我们所知,这是首次将NAS应用于解决dMRI信号预测问题。

结果

实验结果表明,所提出的NAS方法能够实现快速训练并准确预测dMRI信号。对于具有双扩散编码(DDE)、双振荡扩散编码(DODE)、多壳和类扩散谱成像(DSI)脉冲梯度自旋回波(PGSE)四种采集策略的dMRI信号,由NAS设计的多层感知器网络的均方误差分别为0.0043、0.0034、0.0147和0.0199。

与现有方法的比较

我们还将NAS与其他机器学习预测方法进行了比较,如支持向量回归(SVR)、决策树(DT)、随机森林(RF)、k近邻(KNN)、自适应增强回归器(AR)、梯度提升回归器(GBR)和极端随机树回归器(ET)。在大多数情况下,NAS取得了更好的预测性能。

结论

在本研究中,开发了NAS用于预测dMRI信号,并且它可能成为一种有效的预测工具。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验