Department of Biostatistics, School of Public Health, Boston University, Massachusetts, MA, 02215, USA.
Human Genetics Center, Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.
Eur J Hum Genet. 2022 Dec;30(12):1355-1362. doi: 10.1038/s41431-021-00980-0. Epub 2021 Oct 25.
The development of sequencing technology calls for new powerful methods to detect disease associations and lower the cost of sequencing studies. Family history (FH) contains information on disease status of relatives, adding valuable information about the probands' health problems and risk of diseases. Incorporating data from FH is a cost-effective way to improve statistical evidence in genetic studies, and moreover, overcomes limitations in study designs with insufficient cases or missing genotype information for association analysis. We proposed family history aggregation unit-based test (FHAT) and optimal FHAT (FHAT-O) to exploit available FH for rare variant association analysis. Moreover, we extended liability threshold model of case-control status and FH (LT-FH) method in aggregated unit-based methods and compared that with FHAT and FHAT-O. The computational efficiency and flexibility of the FHAT and FHAT-O were demonstrated through both simulations and applications. We showed that FHAT, FHAT-O, and LT-FH methods offer reasonable control of the type I error unless case/control ratio is unbalanced, in which case they result in smaller inflation than that observed with conventional methods excluding FH. We also demonstrated that FHAT and FHAT-O are more powerful than LT-FH and conventional methods in many scenarios. By applying FHAT and FHAT-O to the analysis of all cause dementia and hypertension using the exome sequencing data from the UK Biobank, we showed that our methods can improve significance for known regions. Furthermore, we replicated the previous associations in all cause dementia and hypertension and detected novel regions through the exome-wide analysis.
测序技术的发展需要新的强大方法来检测疾病关联并降低测序研究的成本。家族史 (FH) 包含亲属疾病状况的信息,为先证者的健康问题和疾病风险提供了有价值的信息。纳入 FH 数据是一种经济有效的方法,可以提高遗传研究中的统计证据,并且克服了由于病例不足或关联分析中缺失基因型信息而导致的研究设计的局限性。我们提出了基于家族史聚集单位的检验 (FHAT) 和最优 FHAT (FHAT-O),以利用可用的 FH 进行罕见变异关联分析。此外,我们在聚集单位方法中扩展了病例对照状态和 FH 的易患性阈值模型 (LT-FH) 方法,并将其与 FHAT 和 FHAT-O 进行了比较。通过模拟和应用,证明了 FHAT 和 FHAT-O 的计算效率和灵活性。我们表明,除非病例/对照比不平衡,否则 FHAT、FHAT-O 和 LT-FH 方法可以合理控制第一类错误,在这种情况下,它们导致的膨胀比不包括 FH 的传统方法观察到的要小。我们还表明,在许多情况下,FHAT 和 FHAT-O 比 LT-FH 和传统方法更有效。通过应用 FHAT 和 FHAT-O 对 UK Biobank 的外显子测序数据进行全因痴呆和高血压分析,我们表明我们的方法可以提高已知区域的显著性。此外,我们通过全外显子分析在全因痴呆和高血压中复制了先前的关联,并检测到了新的区域。